Explanation:
It is given that,
The volume of a right circular cylindrical, 
We know that the volume of the cylinder is given by :

............(1)
The upper area is given by :



For maximum area, differentiate above equation wrt r such that, we get :



r = 1.83 m
Dividing equation (1) with r such that,



Hence, this is the required solution.
Explanation:
frequency =speed/wavelength
=5/0.5=10Hz
Answer:
The value of the average convection coefficient is 20 W/Km².
Explanation:
Given that,
For first object,
Characteristic length = 0.5 m
Surface temperature = 400 K
Atmospheric temperature = 300 K
Velocity = 25 m/s
Air velocity = 5 m/s
Characteristic length of second object = 2.5 m
We have same shape and density of both objects so the reynold number will be same,
We need to calculate the value of the average convection coefficient
Using formula of reynold number for both objects



Here, 


Put the value into the formula


Hence, The value of the average convection coefficient is 20 W/Km².
When a charged object is brought near to but does not touch a neutral object, it causes the side of the neutral object that the charged object is near to become the other charge. It causes charge migration within the neutral object so the two charges (positive and negative) move to opposite sides of the object. Because the two objects do not touch, they do not repel each other, but rather have a slight attraction because of charge migration. If the two object were to touch then they would repel.
Answer:
The given circuit diagram shows parallel circuit.
Explanation:
In this circuit diagram two bulbs are connected in parallel combination because current flows from the battery gets bifurcated at the junction. Thus, two bulbs are connected in parallel combination.
This parallel combinations of bulbs then connected to the battery given in the diagram. So, the combinations of bulbs are connected in parallel combinations with the battery.
Hence, both bulbs and battery are connected in parallel combinations with each other.
The circuit diagram shown in figure is parallel.