Answer:
0.85V
Explanation:
The emf is calculated by using the Lenz's Law

But for this case we have that the magnetic field is constant. Hence we have

where we have taken that the intial time is t1=0
I hope this is useful for you
regards
Answer:
length = 7*10^(-8)km
width = 4.666*10^(-8) km
Explanation:
We know that:
1 μm = 1*10^(-6) m
and
1km = 1*10^3 m
or
1m = 1*10^(-3) km
if we replace the meter in the first equation, we get:
1 μm = 1*10^(-6)*1*10^(-3) km
1 μm = 1*10^(-6 - 3)km
1 μm = 1*10^(-9)km
Now with this relationship we can transform our measures:
Length: 70 μm is 70 times 1*10^(-9)km, or:
L = 70*1*10^(-9)km = 7*10^(-8)km
And for width, we have 47.66um, this is 46.66 times 1*10^(-9)km, or:
W = 46.66*1*10^(-9)km = 4.666*10^(-8) km
Answer:
ΔP = (640 N/cm^2)
Explanation:
Given:-
- The volume increase, ΔV/V0 = 4 ✕ 10^-3
- The Bulk Modulus, B = 1.6*10^9 N/m^2
Find:-
Calculate the force exerted by the moonshine per square centimeter
Solution:-
- The bulk modulus B of a material is dependent on change in pressure or Force per unit area and change in volume by the following relationship.
B = ΔP / [(ΔV/V)]
- Now rearrange the above relation and solve for ΔP or force per unit area.
ΔP = B* [(ΔV/V)]
- Plug in the values:
ΔP = (1.6*10^9)*(4 ✕ 10^-3)
ΔP = 6400000 N/m^2
- For unit conversion from N/m^2 to N/cm^2 we have:
ΔP = (6400000 N/m^2) cm^2 / (100)^2 m^2
ΔP = (640 N/cm^2)
im sorry but i dont know, good luck at finding someone else who does.