Answer:
A single component that can’t be separated
brainliest please ;)
Just find the density of every metal and select the one with a density of 2.71 g/cm³ . This is:
Metal 1
ρ = m/V
ρ = 22.1 g / 3 cm³
ρ = 7.367 g / cm³
Metal 2
ρ = m/V
ρ = 42 g / 4 cm³
ρ = 10.5 g / cm³
Metal 3
ρ = m/V
ρ = 9.32 g / 5 cm³
ρ = 1.864 g / cm³
Metal 4
ρ = m/V
ρ = 8.13 g / 3 cm³
ρ = 2.71 g / cm³
<h2>R / Metal 4 was selected.</h2>
Explanation:
- Newton's first law of motion:
"An object at rest (or in uniform motion) remains at rest (or in uniform motion) unless acted upon an unbalanced force
In this situation, we can apply Newton's first law to the keys of the keyboard that are not hit by the fingers of the man. In fact, as no force act on the keys, they remain at rest.
- Newton's second law of motion:
"The acceleration experienced by an object is proportional to the net force exerted on the object; mathematically:

where F is the net force, m is the mass of the object, and a its acceleration"
In this case, we can apply Newton's second law to the keys of the keyboard that are hit by the man: in fact, as they are hit, they experience a downward force, and therefore they experience a downward acceleration.
"Newton's third law of motion:
"When an object A exerts a force on an object B (action force), then object B exerts an equal and opposite force on object A (reaction force)"
Here We can apply Newton's third law to the pair of objects finger-key: in fact, as the finger apply a force on the key (action force), then the key exerts a force back on the finger (reaction force), equal and opposite.
Answer:
D is the answer I think (0 w 0 )
Explanation:
Answer:
Part a)

Part b)

Part c)

Part d)

Explanation:
Part a)
While bucket is falling downwards we have force equation of the bucket given as

for uniform cylinder we will have

so we have


now we have




now we have


Part b)
speed of the bucket can be found using kinematics
so we have



Part c)
now in order to find the time of fall we can use another equation



Part d)
as we know that cylinder is at rest and not moving downwards
so here we can use force balance


