The cluster that is most likely to be located in the halo of our galaxy is the diagram that shows main-sequence stars of every spectral type except O, along with a few giants and supergiants.
<h3>What are star clusters?</h3>
Star clusters are large collections of stars. Star clusters are classified into two types: Globular clusters are gravitationally bound groups of tens of thousands to millions of old stars.
Because of their location on the dusty spiral arms of spiral galaxies, they are sometimes referred to as galactic clusters. Stars in an open cluster share a common ancestor as they all formed from the same massive molecular cloud.
A typical spiral galaxy has a faint, extended stellar halo. A stellar halo is an essentially spherical population of stars and globular clusters thought to surround most disk galaxies and the cD class of elliptical galaxies. It should be noted that a halo is a spherical cloud of stars surrounding a galaxy. Astronomers have proposed that the Milky Way's halo is composed of two populations of stars.
Learn more about star on:
brainly.com/question/21379923
#SPJ1
Explanation:
Formula to determine the critical crack is as follows.

= 1,
= 24.1
[/tex]\sigma_{y}[/tex] = 570
and, 
= 427.5
Hence, we will calculate the critical crack length as follows.
a = 
= 
= 
Therefore, largest size is as follows.
Largest size = 2a
= 
= 
Thus, we can conclude that the critical crack length for a through crack contained within the given plate is
.
Answer:
16 cm
Explanation:
Given that,
The object begins from 0 and moves 3cm towards left side followed by 7 cm towards the right and then, 6 cm towards the left side.
Let the x-axis to be the +ve and on the right side and -ve on the left
Thus, displacement would be:
= 0 -3 + 7 -6
= -2 cm
This implies that the object displaces 2cm towards the left.
While the total distance covered by the object equal to,
= 0cm + 3cm + 7cm + 6cm
= 16 cm
Thus, <u>16 cm</u> is the total distance.
Physical Weathering<span> involves rocks breaking through contact with atmospheric conditions, but </span>Chemical Weathering<span> breaks down rocks with the effect of certain chemicals. They both made rocks and other sediments have cracks in them.</span>Physical and Chemical Weathering<span> both have </span>differences<span>. Here are </span>some<span> of them</span>