Increasing the concentration of one or more reactants will often increase the rate of reaction. This occurs because a higher concentration of a reactant will lead to more collisions of that reactant in a specific time period.
Reaction rate increases with concentration, as described by the rate law and explained by collision theory. As reactant concentration increases, the frequency of collision increases. The rate of gaseous reactions increases with pressure, which is, in fact, equivalent to an increase in concentration of the gas.
The total number of neutrons in the nucleus of a k-37 atom is 18 neutrons.
Hope this helps ;)
Answer:
83.9g of sulfuric acid is the minimum mass you would need
1.73g of hydrogen would be produced
Explanation:
Based on the reaction:
2 Al(s) + 3 H₂SO₄(aq) → Al₂(SO₄)₃(aq) + 3 H₂(g)
2 moles of solid aluminium react with 3 moles of sulfuric acid. Also, two moles of Al produce 3 moles of hydrogen gas.
15.4g of Al are:
15.4g Al × (1mol / 26.98g) = 0.571 moles of Al.
Moles of sulfuric acid:
0.571 moles Al × (3 mol H₂SO₄ / 2 mol Al) = 0.8565 moles H₂SO₄
In grams:
0.8565 moles H₂SO₄ × (98g / 1mol) = <em>83.9g of sulfuric acid is the minimum mass you would need</em>
In the same way, moles of hydrogen produced are:
0.571 moles Al × (3 mol H₂ / 2 mol Al) = 0.8565 moles H₂
In grams:
0.8565 moles H₂ × (2.015g / 1mol) = <em>1.73g of hydrogen would be produced</em>
Answer:
Cupric ions
Explanation:
In the single displacement reaction shown, the cupric ions lost two electrons.
Cu²⁺ + 2e⁻ → Cu
The replacement of a metallic ion in solution by a metal atom higher in the activity series than than the metal in solution falls into this category of reactions.
Since Zn higher in the series, it displacements the cupric ions.