The density of the sample is:
Density = mass / volume
Density = 9.85 / 0.675
Density = 14.6 g/cm³
If the sample has 95% gold, and 5% silver, its density should be:
0.95 x 19.3 + 0.05 x 10.5
Theoretical density = 18.9 g/cm³
The difference in theoretical and actual densities is very large, making it likely that the jeweler was not telling the truth.
Answer:
150ml
Explanation:
For this question,
NaOH completely dissociates. It is a strong base
HCl also completely dissociates. It is a strong acid
So we have this equation
m1v1 = m2v2 ----> equation 1
M2 = 2m
V1= ??
M2 = 6m
V2 = 50m
When we input these into equation 1, we have:
2m x v1 = 6m x 50ml
V1 = 6m x 50ml/2
V1 = 300/2
V1 = 150ml
Therefore NaOH that is required to neutralize the solution of hydrochloric acid is 150ml.
Thank you
Answer:
The correct answer is A. 140 atm
Explanation:
We use the gas formula, which results from the combination of the Boyle, Charles and Gay-Lussac laws. According to which at a constant mass, temperature, pressure and volume vary, keeping constant PV / T. We convert the unit Celsius into Kelvin:
0 ° C = 273K, 67 ° C = 273 + 67 = 340K; 94 ° C = 273 + 94 = 367K
P1xV1 /T1= P2x V2/T2
P2= ((P1xV1 /T1)xT2)/V2
P2=((88,89atm x 17L/340K)x367K)/12L= <em>135,927625 atm</em>
Answer:
When a solid turns to a gas.
Explanation:
Answer:
33.3 g AlCl3
Explanation:
First:
You need a balanced chem equation.
2Al + 3Cl2 --->2AlCl3
So now you use this to set up train track method which helps us cancel out the units. Also we dont care about chlorine because it is excess.
6.73g Al x 1mol Al/26.98g Al x 2mol AlCl3/2molAl x 133.34g AlCl3/1molAlCl3
= 33.3 g AlCl3