The order of the positive and negative feedback loops are positive, positive, negative, positive, positive, negative.
<h3>
What is a feedback loop?</h3>
A system component known as a feedback loop is one in which all or a portion of the output is used as input for subsequent actions. A minimum of four phases comprise each feedback loop. Input is produced in the initial phase. Input is recorded and stored in the subsequent stage. Input is examined in the third stage, and during the fourth, decisions are made using the knowledge from the examination.
Both negative and positive feedback loops are possible. Insofar as they stay within predetermined bounds, negative feedback loops are self-regulating and helpful for sustaining an ideal condition. One of the most well-known examples of a self-regulating negative feedback loop is an old-fashioned home thermostat that turns on or off a furnace using bang-bang control.
To learn more about feedback loop, visit:
brainly.com/question/11312580
#SPJ4
The EMT must assume that any unwitnessed water-related incident is accompanied by potential spinal damage.
<h3>What is spinal damage?</h3>
- Nerves or the spinal cord in any way damaged at the end of the spinal canal.
- A rapid strike or cut to the spine can cause a traumatic spinal cord damage.
- Below the damage site, a spinal cord injury frequently results in a lifelong loss of strength, feeling, and function.
- A lot of people with spinal cord injuries may lead productive, independent lives with the help of rehabilitation and assistive technology.
- Symptom-reducing medications and spinal stabilisation surgery are used as treatments.
- Herniated discs are among the common injuries and diseases of the spine. Stenosis of the lower back and Scoliosis are others.
- After taking part in a rehabilitation programme, over 80% of people with incomplete spinal cord injury (SCI) can walk again.
Learn more about spinal cord here:
brainly.com/question/23916836
#SPJ4
D.all of the above is the answer for this question
Answer:
The relationship between voltage, current, and resistance is described by Ohm's law. This equation, i = v/r, tells us that the current, i, flowing through a circuit is directly proportional to the voltage, v, and inversely proportional to the resistance, r.