Answer: 1.037M
Explanation:
Since the rate constant unit is per seconds, therefore it is a first order reaction.
First order reaction equation is given as
InA= -kt +InAo
Where,Ao is the initial concentration of reactant =0.600M
A is the concentration of reactant at a specifies time t=3×60=180s
and k is the rate constant
InA = -6.50×10^-3 ×180 +In(0.6)
InA = -1.17 + 0.5108
InA= -1.680
A = e-1.680
A= 1.037M
Therefore the concentration after 3minutes is 1.037M
I believe D because since it is up so high when the lady begins to fall she will have a greater force bringing her back to her original starting point
Answer and Explanation:
Because metallic bonding involves delocalized electrons. It is described as a "<em>sea of electrons</em>", because the electrons are not confined around the nucleus of metal atoms, but they are delocalized: thay can be located in one nucleus and then in another neighbor atom. Thus, the electrons have more freedom to move from one part of the metal to another and electricity is well conducted.
<h3><u>Answer;</u></h3>
Cellulose
<h3><u>Explanation</u>;</h3>
- Cellulose is a polysaccharide and the most abundant organic compound on the Earth's surface.
- <em><u>It is an important organic molecule due to its strong structure which provides a wide variety of functions. </u></em>
- <em><u>Cellulose is a major component of tough cell walls that surround plant cells and is what makes plant stems, leaves, and branches very strong.</u></em>
- The molecules of cellulose are arranged such that they are parallel to each other joined by hydrogen bond. this arrangement forms long structures that combine with other cellulose molecules producing a strong support structure.
Precipitation hope this helped you