Answer:
6.6 N
Explanation:
Let's take the direction of the force of 4.0 N as positive x-direction. This means that the force of 3.0 N is at 40 degrees above it. So the components of the two forces along the x- and y-directions are:


So the resultant has components

So the magnitude of the resultant is

And in order for the body to be balanced, the third force must be equal and opposite (in direction) to this force: so, the magnitude of the third force must be 6.6 N.
Answer:
Fg = 98.1 [N]; N = 98.1 [N]; Ff = 39.24 [N]; a = 2.076[m/^2]
Explanation:
To solve this problem, we must make a free body diagram and interpret each of the forces acting on the box. In the attached diagram we can find the free body diagram.
The gravitational force is equal to:
Fg = (10 * 9.81) = 98.1 [N]
Now by summing forces on the Y axis equal to zero, we can find the normal force exerted by the surface.
N - Fg = 0
N = Fg
N = 98.1 [N]
The friction force is defined as the product of normal force by the coefficient of friction.
Ff = N * μ
Ff = 98.1 * 0.4
Ff = 39.24 [N]
By the sum forces on the x-axis equal to the product of mass by acceleration (newton's second law), we can find the value of acceleration.
60 - Ff = m * a
60 - 39.24 = 10 * a
a = 2.076[m/^2]
Answer:
When a positive charged object is placed near a conductor electrons are attracted the the object. ... When electric voltage is applied, an electric field within the metal triggers the movement of the electrons, making them shift from one end to another end of the conductor. Electrons will move toward the positive side. As you know, electrons are always moving. They spin very quickly around the nucleus of an atom. As the electrons zip around, they can move in any direction, as long as they stay in their shell.
Explanation:
Acceleration is the change in speed over change in time.
a = Δv / Δt
a. The car's acceleration is:
a = (80 km/h − 0 km/h) / 10 s
a = 8 km/h/s
So every second, the speed increases by 8 km/h.
b. The cyclist's acceleration is:
a = (16 m/s − 4.0 m/s) / 5.6 s
a = 2.1 m/s²
c. The stone's speed is:
10.0 m/s² = (v − 0 m/s) / 3.5 s
v = 35 m/s
d. The time is:
1.6 m/s² = (10 m/s − 0 m/s) / t
t = 6.3 s
Answer: The density of this piece of jewelry is 
Explanation:
To calculate the density, we use the equation:

Mass of piece of jewellery = 130.8 g
Density of piece of jewellery = ?
Volume of piece of jewellery =( 62.4-47.7 ) ml = 14.7 ml =

Putting values in above equation, we get:

Thus density of this piece of jewelry is 