A 0.454-kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 21.0 N/m. The block rests on a frictionless surface. A 5.90×10−2-kg wad of putty is thrown horizontally at the block, hitting it with a speed of 8.97 m/s and sticking.
1 answer:
Answer:
a. Δx = 2.59 cm
Explanation:
mb = 0.454 kg , mp = 5.9 x 10 ⁻² kg , vp = 8.97 m / s , k = 21.0 N / m
Using momentum conserved
mb * (0) + mp * vp = ( mb + mp ) * vf
vf = ( mp / mp + mb) * vp
¹/₂ * ( mp + mb) * (mp / mp +mb) ² * vp ² = ¹/₂ * k * Δx²
Solve to Δx '
Δx = √ ( mp² * vp² ) / ( k * ( mp + mb )
Δx = √ ( ( 5.9 x 10⁻² kg ) ² * (8.97 m /s) ² / [ 21.0 N / m * ( 5.9 x10 ⁻² kg + 0.454 kg ) ]
Δx = 0.02599 m ⇒ 2.59 cm
You might be interested in
I believe the answer to your question is A. 340 meters/second hope i helped
Which conditions I think you have place an incorrect image?
Answer:
rolling friction
Explanation:
Answer:
She was a success.
i don't think commas are necessary because it's not a compound or complicated sentence.
Answer:
From shortest wavelength to longest wavelength:
Gamma Rays
X-Rays
Ultraviolet
Visible Light
Infrared waves
Microwaves
Radio Waves
Explanation: