Answer:
The shear stress will be 80 MPa
Explanation:
Here we have;
τ = (T·r)/J
For rectangular tube, we have;
Average shear stress given as follows;
Where;
![\tau_{ave} = \frac{T}{2tA_{m}}](https://tex.z-dn.net/?f=%5Ctau_%7Bave%7D%20%3D%20%5Cfrac%7BT%7D%7B2tA_%7Bm%7D%7D)
= 100 mm × 200 mm = 20000 mm² = 0.02 m²
t = Thickness of the shaft in question = 2 mm = 0.002 m
T = Applied torque
Therefore, 50 MPa = T/(2×0.002×0.02)
T = 50 MPa × 0.00008 m³ = 4000 N·m
Where the dimension is 50 mm × 250 mm, which is 0.05 m × 0.25 m
Therefore,
= 0.05 m × 0.25 m = 0.0125 m².
Therefore, from the following average shear stress formula, we have;
Plugging in then values, gives;
![\tau_{ave} = \frac{4000}{2\times 0.002 \times 0.0125} = 80,000,000 Pa](https://tex.z-dn.net/?f=%5Ctau_%7Bave%7D%20%3D%20%5Cfrac%7B4000%7D%7B2%5Ctimes%200.002%20%5Ctimes%200.0125%7D%20%3D%2080%2C000%2C000%20Pa)
The shear stress will be 80,000,000 Pa or 80 MPa.