Answer:
Mechanical Advantage Formula
The efficiency of a machine is equal to the ratio of its output to its input. It is also equal to the ratio of the actual and theoretical MAs. But, it does not mean that low-efficiency machines are of limited use. An automobile jack, for example, have to overcome a great deal of friction and therefore it has low efficiency. But still, it is extremely valuable because small effort can be applied to lift a great weight.
Also, in another way the mechanical advantage is the force generated by a machine to the force applied to it which is applied in assessing the performance of the machine.
The mechanical advantage formula is:
MA = FBFA
Explanation:
MAmechanical advantageFBthe force of the object
FAthe effort to overcome the force
Answer:
<em>No, the velocity profile does not change in the flow direction.</em>
Explanation:
In a fluid flow in a circular pipe, the boundary layer thickness increases in the direction of flow, until it reaches the center of the pipe, and fill the whole pipe. If the density, and other properties of the fluid does not change either by heating or cooling of the pipe, <em>then the velocity profile downstream becomes fully developed, and constant, and does not change in the direction of flow.</em>
Answer:
The minimum diameter for each cable should be 0.65 inches.
Explanation:
Since, the load is supported by two ropes and the allowable stress in each rope is 1500 psi. Therefore,
(1/2)(Weight/Cross Sectional Area) = Allowable Stress
Here,
Weight = 1000 lb
Cross-sectional area = πr²
where, r = minimum radius for each cable
(1/2)(1000 lb/πr²) = 1500 psi
500 lb/1500π psi = r²
r = √1.061 in²
r = 0.325 in
Now, for diameter:
Diameter = 2(radius) = 2r
Diameter = 2(0.325 in)
<u>Diameter = 0.65 in</u>