Answer:
≅ 111 KN
Explanation:
Given that;
A medium-sized jet has a 3.8-mm-diameter i.e diameter (d) = 3.8
mass = 85,000 kg
drag co-efficient (C) = 0.37
(velocity (v)= 230 m/s
density (ρ) = 1.0 kg/m³
To calculate the thrust; we need to determine the relation of the drag force; which is given as:
=
× CρAv²
where;
ρ = density of air wind.
C = drag co-efficient
A = Area of the jet
v = velocity of the jet
From the question, we can deduce that the jet is in motion with a constant speed; as such: the net force acting on the jet in the air = 0
SO, 
We can as well say:

We can now replace
in the above equation.
Therefore,
=
× CρAv²
The A which stands as the area of the jet is given by the formula:

We can now have a new equation after substituting our A into the previous equation as:
=
× Cρ 
Substituting our data from above; we have:
=
× 
= 
= 110,990N
in N (newton) to KN (kilo-newton) will be:
= 
= 110.990 KN
≅ 111 KN
In conclusion, the jet engine needed to provide 111 KN thrust in order to cruise at 230 m/s at an altitude where the air density is 1.0 kg/m³.
Answer:
Certamente você conhece três dimensões: comprimento, largura e profundidade. Além disso, quando se pensa um pouco fora da caixa também seria possível adicionar a dimensão do tempo.
Provavelmente, algumas pessoas viajam na maionese quando toca-se nesse assunto. Vem em suas mentes universos paralelos e até mesmo realidades alternativas. Mas também não se trata disso.
Explanation:
Basicamente as dimensões são as facetas do que nós percebemos a ser realidade. Existem muitos debates sobre dimensões na física. Um dos que mais chamam a atenção se chama Teoria das Cordas.
r
Answer:
a, c
Explanation:
As the problem statement tells you, the phasor technique cannot be used when the frequencies are different. The frequencies are different when the coefficients of t are different. The different ones are highlighted.
a. 45 sin(2500t – 50°) + 20 cos(1500t +20°)
b. 25 cos(50t + 160°) + 15 cos(50t +70°)
c. 100 cos(500t +40°) + 50 sin(500t – 120°) – 120 cos(500t + 60°) -100 sin(10,000t +90°) + 40 sin(10, 100t – 80°) + 80 cos(10,000t)
d. 75 cos(8t+40°) + 75 sin(8t+10°) – 75 cos(8t + 160°)
Answer:
a regular sized microwave will use 850 to 1800 watts depending on the model. An average modern microwave will use around 1200 watts.
Explanation: