1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rewona [7]
3 years ago
12

THE PROBLEM!

Physics
1 answer:
Elodia [21]3 years ago
3 0

Answer: 15.29

Explanation: there you go have a nice day (*^p^*)

You might be interested in
According to Kepler's harmonic law, Neptune would have a _________ orbit around the Sun than Mercury.
chubhunter [2.5K]
Neptune would have a slower orbit i just did this

3 0
3 years ago
Read 2 more answers
A penny rides on top of a piston as it undergoes vertical simple harmonic motion with an amplitude of 4.0cm. If the frequency is
BlackZzzverrR [31]

Answer:

the penny loses contact at the piston's highest point.

f = 2.5 Hz

Explanation:

Concepts and Principles  

1- Newton's Second Law: The net force F on a body with mass m is related to the body's acceleration a by  

∑F = ma                                                          (1)  

2- The maximum transverse acceleration of a particle in simple harmonic motion is found in terms of the angular speed w and the amplitude A as follows:  

a_max = -w^2A                                                (2)  

3- The angular frequency w of a wave is related to the frequency f by:  

w = 2π f                                                              (3)  

Given Data  

- The amplitude of the piston is: A = (4.0 cm) ( 1/ 100 cm)=  0.04 m.  

- The frequency of oscillation of the piston is steadily increased.

Required Data

<em>In part (a), we are asked to determine the point at which the penny first loses contact with the piston.  </em>

<em>In part (b), we are asked to determine the maximum frequency for which the penny just barely remains in place for a full cycle.  </em>

Solution  

(a)  

The free-body diagram in Figure 1 shows the forces acting on the penny; mi is the gravitational force exerted by the Earth on the penny andrt is the normal contact force exerted by the piston on the penny.  

figure 1 is attached

Apply Newton's second law from Equation (1) in the vertical direction to the penny:  

∑F_y -mg= ma        

Solve for n=m(g+a) The penny loses contact with the surface of the oscillating piston when the normal force n exerted by the piston is zero. So  

0 = m(g + a)

a = —g  

Therefore, the penny loses contact with the piston when the piston starts accelerating downwards. The piston first acceleratesdownward at its highest point and hence the penny loses contact at the piston's highest point.

(b)  

The maximum acceleration of the penny at the highest point of the piston is found from Equation (2):  

a = —w^2A  

where a = —g at the highest point. So  

g = w^2A  

Solve for w:  

w =√g/A

Substitute for w from Equation (3):

2πf =  √g/A

Solve for f :  

f = 1/2π√g/A

Substitute numerical values:  

f = 1/2π√9.8 m/s^2/0.04

f = 2.5 Hz

6 0
3 years ago
The resistivity of a semiconductor can be modified by adding different amounts of impurities. A rod of semiconducting material o
zavuch27 [327]

Answer:

pp

Explanation:

7 0
3 years ago
Does anyone want to join an LGBTQ squad?
Korvikt [17]
Mooooooooooooooooooo
6 0
2 years ago
A laboratory technician drops a 72.0 g sample of unknown solid material, at a temperature of 80.0°C, into a calorimeter. The cal
Natalija [7]

Answer : The specific heat of unknown sample is, 8748.78J/kg^oC

Explanation :

In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.

q_1=-[q_2+q_3]

m_1\times c_1\times (T_f-T_1)=-[m_2\times c_2\times (T_f-T_2)+m_3\times c_3\times (T_f-T_2)]

where,

c_1 = specific heat of unknown sample = ?

c_2 = specific heat of water = 4186J/kg^oC

c_3 = specific heat of copper = 390J/kg^oC

m_1 = mass of unknown sample = 72.0 g  = 0.072 kg

m_2 = mass of water = 203 g  = 0.203 kg

m_2 = mass of copper = 187 g  = 0.187 kg

T_f = final temperature of calorimeter = 39.4^oC

T_1 = initial temperature of unknown sample = 80.0^oC

T_2 = initial temperature of water and copper = 11.0^oC

Now put all the given values in the above formula, we get

0.072kg\times c_1\times (39.4-80.0)^oC=-[(0.203kg\times 4186J/kg^oC\times (39.4-11.0)^oC)+(0.187kg\times 390J/kg^oC\times (39.4-11.0)^oC)]

c_1=8748.78J/kg^oC

Therefore, the specific heat of unknown sample is, 8748.78J/kg^oC

7 0
3 years ago
Other questions:
  • A ball of mass 5 kg attached to a string is swung in a horizontal circle of radius 0.5 m. If the tension in the string is 10 N,
    6·1 answer
  • A 100-kg tackler moving at a speed of 2.6 m/s meets head-on (and holds on to) an 92-kg halfback moving at a speed of 5.0 m/s. Pa
    11·1 answer
  • Gravity is affected by...
    6·1 answer
  • A prisoner tries to escape from a Nashville, Tennessee prison by hiding in the laundry truck. The prisoner is surprised when the
    6·1 answer
  • If two planets orbit a star, but planet B is twice as far from the star as planet A, planet A will receive ____ times the flux t
    5·1 answer
  • Our galaxy, the Milky Way, has a diameter of about 100,000 light years. How many years would it take a spacecraft to cross the g
    10·1 answer
  • 7. Mac and Tosh are arguing about the track design. Mac claims that the car is moving fastest at point F because it is furthest
    13·1 answer
  • A person drops a ball off the top of a 10 story building. What statement below best describes the movement of the ball?
    6·1 answer
  • What is the acceleration of a car that goes from 40 m/s to 80 m/s in 2s?
    7·1 answer
  • A boy is swinging a yo-yo with mass 0.5 kg in a circle with radius 0.7 m at a
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!