Answer is: volume of oxygen is 4.63 liters.
Balanced chemical reaction: 2C + O₂ → 2CO.
m(C) = 4.50 g.
n(C) = m(C) ÷ M(C).
n(C) = 4.50 g ÷ 12 g/mol.
n(C) = 0.375 mol.
From chemical reaction: n(C) : n(O₂) = 2 : 1.
n(O₂) = 0.1875 mol.
T = 48°C = 321.15 K.
p = 810 mmHg ÷ 760 mmHg/atm= 1.066 atm.
<span>R = 0.08206
L·atm/mol·K.
Ideal gas law: p·V = n·R·T.</span>
V(O₂) =
n·R·T / p.<span>
V(O₂) =
0.1875 mol · 0.08206 L·atm/mol·K · 321.15 K / 1.066 atm.</span><span>
V(O₂<span>) =
4.63 L.</span></span>
Answer: The gas generated by two antacid tablets has a smaller volume.
Explanation:
Since the antiacid is the limiting reagent, we know that the more tablets there are, the more gas there will be.
This means that there will be more gas generated by the four antiacid tablets when compared to the two antiacid tablets, which gives us that the gas generated by the two antiacid tablets has a smaller volume.
The minimum amount of energy that colliding particles must have for them to react.
You must remember that oxidation number of hydrogen in acids is always +1, oxidation number of oxygen in oxides & acids is always -2... metals has always oxidation number on plus!
group NO3 comes from HNO3...and oxidation number of whole acid group is always on minus and equal to the amount of hydrogen atoms in this acid... so oxidation number of NO3 = -1
we have 2 NO3 groups so 2*(-1) = -2 and that is the reason why oxidation number of Fe in this formula must be +2... because sum of all elements always gives 0!
Now we could count of oxidation number for nitrogen... we write HNO3 and start counting from right to left:
3*(-2) from oxygens + 1 from hydrogen = -5
so nitrogen must have +5 oxidation number... because sum all in formula must be 0.
Answer: How many moles of HCl was produced?
⇒ 0.261 moles of HCl
How many moles of MgCl2 reacted?
⇒ 0.131 moles of MgCl2
What mass of MgCl2 reacted?
⇒ 12.4 g MgCl2
Explanation:
i just did it