Answer:
equivalent exchange forces cancel out but the substances are affected around the area
Explanation:
<u>Answer:</u> The correct option is C) 1.68 mol/L
<u>Explanation:</u>
Molarity is defined as the amount of solute expressed in the number of moles present per liter of solution. The units of molarity are mol/L. The formula used to calculate molarity:
.....(1)
Given values:
Given mass of
= 150 g
Molar mass of
= 180 g/mol
Volume of the solution = 0.50 L
Putting values in equation 1, we get:

Hence, the correct option is C) 1.68 mol/L
In order for a cellular device to operate, it requires battery power, otherwise known as energy.
or you can do this
Us humans consume food so that we can have the sufficient energy to accomplish tasks.
<u>Answer:</u> The decreasing order of
is 
<u>Explanation:</u>
The balanced equilibrium reaction for the ionization of silver bromide follows:

s s
The expression for solubility constant for this reaction will be:
![K_{sp}=[Ag^{+}][Br^-]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BAg%5E%7B%2B%7D%5D%5BBr%5E-%5D)
We are given:

Putting values in above equation, we get:

Solubility product of AgBr = 
The balanced equilibrium reaction for the ionization of silver cyanide follows:

s s
The expression for solubility constant for this reaction will be:
![K_{sp}=[Ag^{+}][CN^-]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BAg%5E%7B%2B%7D%5D%5BCN%5E-%5D)
We are given:

Putting values in above equation, we get:

Solubility product of AgCN = 
The balanced equilibrium reaction for the ionization of silver thiocyanate follows:

s s
The expression for solubility constant for this reaction will be:
![K_{sp}=[Ag^{+}][SCN^-]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BAg%5E%7B%2B%7D%5D%5BSCN%5E-%5D)
We are given:

Putting values in above equation, we get:

Solubility product of AgSCN = 
The decreasing order of
follows:
