<span>As heat energy reaches an object it can be absorbed in a similar manner to the way sponges absorb water. Heat enters an object, warming it. The longer the object is exposed to the heat source, the more heat it absorbs.</span>
Answer: Multiple covalent bonds may occur in atoms that contain carbon,nitrogen, or <u><em>oxygen</em></u>.
Answer:
c = 0.898 J/g.°C
Explanation:
1) Given data:
Mass of water = 23.0 g
Initial temperature = 25.4°C
Final temperature = 42.8° C
Heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Specific heat capacity of water is 4.18 J/g°C
ΔT = 42.8°C - 25.4°C
ΔT = 17.4°C
Q = 23.0 g × × 4.18 J/g°C × 17.4°C
Q = 1672.84 j
2) Given data:
Mass of metal = 120.7 g
Initial temperature = 90.5°C
Final temperature = 25.7 ° C
Heat released = 7020 J
Specific heat capacity of metal = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 25.7°C - 90.5°C
ΔT = -64.8°C
7020 J = 120.7 g × c × -64.8°C
7020 J = -7821.36 g.°C × c
c = 7020 J / -7821.36 g.°C
c = 0.898 J/g.°C
Negative sign shows heat is released.
<span>Scientific notation is used to express large numbers in a way that is to use, readable, comparable to other numbers and convenient. It is especially useful for things that are very large and very small because it is very tedious to work with many zero's when completing complex math problems.</span>
The answer is 19.9 grams cadmium.
Assuming there was no heat leaked from the system, the heat q lost by cadmium would be equal to the heat gained by the water:
heat lost by cadmium = heat gained by the water
-qcadmium = qwater
Since q is equal to mcΔT, we can now calculate for the mass m of the cadmium sample:
-qcadmium = qwater
-(mcadmium)(0.850J/g°C)(38.6°C-98.0°C)) = 150.0g(4.18J/g°C)(38.6°C-37.0°C)
mcadmium = 19.9 grams