pH is the measure of the hydrogen ion concentration while pOH is of hydroxide ion concentration in the solution. The pH is 0.939 and pOH is 13.061 pOH.
pH is the concentration of the hydrogen ion released or gained by the species in the solution that depicts the acidity and basicity of the solution.
pOH is the concentration of the hydroxide ion in the solution and is dependent on the pH as an increase in pH decreases the pOH and vice versa.
Both HCl and HBr are strong acids and gets ionized 100 % in the solution. If we let 1 L of solution for the acids then the concentration of the hydrogen ion will be 0.100 M.
Since both completely dissociate we would just add the molarities of each of the H+ ions together and then calculate the PH and POH from that :
HCL(0.040M)----> H+(0.040M) +CL-(0.040M)
HBr(0.075M)----> H+(0.075M) +Br-(0.075M)
so 0.040M (H+ from HCL) + 0.075M (H+ from HBr) = 0.115M H+ in total.
pH is calculated as:
pH = -log[H+]
Substituting values in the equation:
log(0.115M)= 0.939 pH
pOH is calculated as:
14 - pH = pOH
Substituting values in the equation above:
14 - 0.939= 13.061 pOH
Therefore, pH is 0.939 and pOH is 13.061.
Learn more about pH and pOH here:
brainly.com/question/2947041
#SPJ4
Answer:
You must divide the grams of your actual yield by the grams of the theoretical yield and multiply by 100 in order to obtain percent yield
Explanation:
Balanced:
1. <span>Na2O + H2O ---> 2NaOH
2. </span><span>K2O + H2O ---> 2KOH
3. </span><span>MgO + H2O ---> Mg(OH)2
4. </span><span>CaO + H2O ---> Ca(OH)2
5. </span><span>SO2 + H2O ⇄ H2SO3
6. </span>SO3 + H2O ---> H2SO4
All except by 2 were balanced.
Answer:
<u><em>Hydroxylation
</em></u>
Explanation:
Hydroxylation is a chemical process that introduces a hydroxyl group (-OH) into an organic compound. In biochemistry, hydroxylation reactions are often facilitated by enzymes called hydroxylases. Hydroxylation is the first step in the oxidative degradation of organic compounds in air.
Answer
If the temperature is increased , the number of collision per second increases.
Explanation
Temperature is proportional to the average kinetic energy of a sample of a gas according to the equation PV=n R T. An increased in temperature , increases the kinetic energy of the gas particles which in turn rises the velocity of the gas particles hitting the walls of the container. The more the number of particles the higher the collision rate and greater the pressure as long as the volume of container and the temperature are constant.