Answer:
a) The heat which we supply to water during boiling is used to overcome these forces of attraction between the particles so that they become totally free and change into a gas. This latent heat does not increase the kinetic energy of water particles and hence no rise in temperature takes place during the boiling of water.
b) Steam produces more severe burns than boiling water even though both are at 100oC because steam contains more heat, in the form of latent heat, than boiling water.
Explanation:
i hope this will help u
Answer:
Explanation:
No not always but it is more likely they will
Answer:
0.0303 Liters
Explanation:
Given:
Mass of the potassium hydrogen phosphate = 0.2352
Molarity of the HNO₃ Solution = 0.08892 M
Now,
From the reaction it can be observed that 1 mol of potassium hydrogen phosphate reacts with 2 mol of HNO₃
The number of moles of 0.2352 g of potassium hydrogen phosphate
= Mass / Molar mass
also,
Molar mass of potassium hydrogen phosphate
= 2 × (39.09) + 1 + 30.97 + 4 × 16 = 174.15 g / mol
Number of moles = 0.2352 / 174.15 = 0.00135 moles
thus,
The number of moles of HNO₃ required for 0.00135 moles
= 2 × 0.00135 mol of HNO₃
= 0.0027 mol of HNO₃
Now,
Molarity = Number of Moles / Volume
thus,
for 0.0027 mol of HNO₃, we have
0.08892 = 0.0027 / Volume
or
Volume = 0.0303 Liters
The answer is 19 ahhahaha
Separation will be achieved if one component adheres to the stationary phase more than the other component does.