Answer:
28 m/s^2
Explanation:
distance, s = 14 m
time, t = 2 - 1 = 1 s
initial velocity, u = 0 m/s
Let a be the acceleration.
Use third equation of motion


a = 28 m/s^2
Thus, the acceleration is 28 m/s^2.
Answer:
Explanation:
Given that
Mass of bowling ball M1=7.2kg
The radius of bowling ball r1=0.11m
Mass of billiard ball M2=0.38kg
The radius of the Billiard ball r2=0.028m
Gravitational constant
G=6.67×10^-11Nm²/kg²
The magnitude of their distance apart is given as
r=r1+r2
r=0.028+0.11
r=0.138m
Then, gravitational force is given as
F=GM1M2/r²
F=6.67×10^-11×7.2×0.38/0.138²
F=9.58×10^-9N
The force of attraction between the two balls is
F=9.58×10^-9N
It increases across a period but it decreases down a group.
Answer:
The forces could be gravity, friction between the car and the ground, the force Katie is applying and the normal reaction.