Answer:
Q = 60192 j
Explanation:
Given data:
Volume of water = 0.45 L
Initial temperature = 23°C
Final temperature = 55°C
Amount of heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 55°C - 23°C
ΔT = 32°C
one L = 1000 g
0.45 × 1000 = 450 g
Specific heat capacity of water is 4.18 j/g°C
Q = m.c. ΔT
Q = 450 g. 4.18 j/g°C. 32°C
Q = 60192 j
Answer:
number of moles = 0.21120811
Explanation:
To find the number of moles, given the mass of the solute, we use the formula:




Label the variables with the numbers in the problem:



The first thing we have to do is find the molar mass of sodium sulfate, in order for us to use the formula for finding the number of moles:
Formula for finding the molar mass of sodium sulfate:

For the variables and what they mean are below for finding the molar mass of sodium sulfate:





Plug the numbers into the formula, to find the molar mass of sodium sulfate:











Now that we have found the molar mass, we can calculate the number of moles in the solution of sodium sulfate with the formula:








0.21120811 rounded gives you 0.2112
or if you did the problem without decimals
30 grams of sodium sulfate divided by its molecular weight – which we found to be 142 – gives us a value of 0.2113 moles.
Answer:
35.9%
Explanation:
The percent volume of the coffee solution can be calculated as follows:
% volume of coffee solution = volume of coffee/total volume of coffee solution × 100
According to this question, a cup of coffee has 71 mL of coffee and 127 mL of water. This means that, the total volume of coffee solution is;
71mL + 127mL = 198mL
% volume = 71/198 × 100
= 0.359 × 100
Percent volume of coffee solution = 35.9%
738.1146 grams, your're welcome
Answer:
50/36 = 25/18
Explanation:
Solution at attachment box
Molality = mole of dissolvable (this question glucose) / kg of water