1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elan Coil [88]
3 years ago
5

What is kinetic energy?

Engineering
2 answers:
Aleksandr [31]3 years ago
8 0

Answer:

<em>Kinetic</em><em> </em><em>Energy</em><em> </em>is a type of energy which a body possesses by virtue of being in motion.

<u>OR</u>

It's the energy of mass in motion.

<h3 /><h3>Hope it helps!!</h3><h3><em>Please</em><em> </em><em>mark me as the brainliest</em><em>!</em><em>!</em><em>!</em></h3>

<em>Thanks</em><em>!</em><em>!</em><em>!</em><em>!</em>

disa [49]3 years ago
3 0

Answer:

kinetic energy means energy which a body possesses by virtue of being in motion

You might be interested in
What is the biggest expectation when engineers test out designs?
forsale [732]
The answer is B because it could be feasible but it’s not a need it and you got a time frame but it’s not a requirement and it doesn’t have to be unique.
6 0
3 years ago
Read 2 more answers
Air at 400kPa, 970 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occu
Sonja [21]

Answer:

a

The rate of work developed is \frac{\r W}{\r m}= 300kJ/kg

b

The rate of entropy produced within the turbine is   \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

Explanation:

     From  the question we are told

          The rate at which heat is transferred is \frac{\r Q}{\r m } = -  30KJ/kg

the negative sign because the heat is transferred from the turbine

          The specific heat capacity of air is c_p = 1.1KJ/kg \cdot K

          The inlet temperature is  T_1 = 970K

          The outlet temperature is T_2 = 670K

           The pressure at the inlet of the turbine is p_1 = 400 kPa

          The pressure at the exist of the turbine is p_2 = 100kPa

           The temperature at outer surface is T_s = 315K

         The individual gas constant of air  R with a constant value R = 0.287kJ/kg \cdot K

The general equation for the turbine operating at steady state is \

               \r Q - \r W + \r m (h_1 - h_2) = 0

h is the enthalpy of the turbine and it is mathematically represented as          

        h = c_p T

The above equation becomes

             \r Q - \r W + \r m c_p(T_1 - T_2) = 0

              \frac{\r W}{\r m}  = \frac{\r Q}{\r m} + c_p (T_1 -T_2)

Where \r Q is the heat transfer from the turbine

           \r W is the work output from the turbine

            \r m is the mass flow rate of air

             \frac{\r W}{\r m} is the rate of work developed

Substituting values

              \frac{\r W}{\r m} =  (-30)+1.1(970-670)

                   \frac{\r W}{\r m}= 300kJ/kg

The general balance  equation for an entropy rate is represented mathematically as

                       \frac{\r Q}{T_s} + \r m (s_1 -s_2) + \sigma  = 0

          =>          \frac{\sigma}{\r m} = - \frac{\r Q}{\r m T_s} + (s_1 -s_2)

    generally (s_1 -s_2) = \Delta s = c_p\ ln[\frac{T_2}{T_1} ] + R \ ln[\frac{v_2}{v_1} ]

substituting for (s_1 -s_2)

                      \frac{\sigma}{\r m} = \frac{-\r Q}{\r m} * \frac{1}{T_s} +  c_p\ ln[\frac{T_2}{T_1} ] - R \ ln[\frac{p_2}{p_1} ]

                      Where \frac{\sigma}{\r m} is the rate of entropy produced within the turbine

 substituting values

                \frac{\sigma}{\r m} = - (-30) * \frac{1}{315} + 1.1 * ln\frac{670}{970} - 0.287 * ln [\frac{100kPa}{400kPa} ]

                    \frac{\sigma}{\r m}=  0.0861kJ/kg \cdot K

           

 

                   

   

5 0
3 years ago
Explain what are rafters?
RSB [31]

Answer:

rafter is a structural component that is used as part of a roof construction. There are also different types of rafters

8 0
2 years ago
A hair dryer is basically a duct of constant diameter in which a few layers of electric resistors are placed. A small fan pulls
Inessa05 [86]

Answer:

the percent increase in the velocity of air is 25.65%

Explanation:

Hello!

The first thing we must consider to solve this problem is the continuity equation that states that the amount of mass flow that enters a system is the same as what should come out.

m1=m2

Now remember that mass flow is given by the product of density, cross-sectional area and velocity

(α1)(V1)(A1)=(α2)(V2)(A2)

where

α=density

V=velocity

A=area

Now we can assume that the input and output areas are equal

(α1)(V1)=(α2)(V2)

\frac{V2}{V1} =\frac{\alpha1 }{\alpha 2}

Now we can use the equation that defines the percentage of increase, in this case for speed

i=(\frac{V2}{V1} -1) 100

Now we use the equation obtained in the previous step, and replace values

i=(\frac{\alpha1 }{\alpha 2} -1) 100\\i=(\frac{1.2}{0.955} -1) 100=25.65

the percent increase in the velocity of air is 25.65%

6 0
3 years ago
Steam enters a turbine in a Rankine cycle power plant at 200 psia and 500 °F. a) Calculate the isentropic thermal efficiency if
Aleks04 [339]

Answer:

η=0.19=19% for p=14.7psi

η=0.3=30% for p=1psi

Explanation:

enthalpy before the turbine, state: superheated steam

h1(p=200psi,t=500F)=2951.9KJ/kg

s1=6.8kJ/kgK

Entalpy after the turbine

h2(p=14.7psia, s=6.8)=2469KJ/Kg

Entalpy  before the boiler

h3=(p=14.7psia,x=0)=419KJ/Kg

Learn to pronounce

the efficiency for a simple rankine cycle is

η=\frac{h1-h2}{h1-h3}

η=(2951.9KJ/kg-2469KJ/Kg)/(2951.9KJ/kg-419KJ/Kg)

η=0.19=19%

second part

h2(p=1psia, s=6.8)=2110

h3(p=1psia, x=0)=162.1

η=(2951.9KJ/kg-2110KJ/Kg)/(2951.9KJ/kg-162.1KJ/Kg)

η=0.3=30%

7 0
3 years ago
Other questions:
  • Convert 250 lb·ft to N.m. Express your answer using three significant figures.
    6·1 answer
  • One of the best ways to find a vacuum leak on a speed-density fuel-injection system is to read the intake air controller (LAC) c
    12·2 answers
  • A round bar of chromium steel, (ρ= 7833 kg/m, k =48.9 W/m-K, c =0.115 KJ/kg-K, α=3.91 ×10^-6 m^2/s) emerges from a heat treatmen
    14·1 answer
  • Air, at a free-stream temperature of 27.0°C and a pressure of 1.00 atm, flows over the top surface of a flat plate in parallel f
    13·1 answer
  • A) For Well A, provide a cross-section sketch that shows (i) ground elevation, (ii) casing height, (iii) depth to
    15·1 answer
  • Answer ppeeeeeaaaalll
    5·1 answer
  • Shelly cashman word 2016 module 2 - project a pdf - does anyone have the fished paper
    11·1 answer
  • How much thermal energy is needed to raise the temperature of 15kg gold from 45⁰ C up to 80⁰ C​
    10·1 answer
  • You find an unnamed fluid in the lab we will call Fluid A. Fluid A has a specific gravity of 1.65 and a dynamic viscosity of 210
    9·1 answer
  • Which of the following is an essential component of reinforced concrete?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!