1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flura [38]
1 year ago
6

Steam at 75 kPa and 8 percent quality is contained in a spring-loaded piston–cylinder device, as shown in Figure, with an initia

l volume of 2 m3 . Steam is now heated until its volume is 5 m3 and its pressure is 225 kPa. Determine the heat transferred to and the work produced by the steam during this process.
​
Engineering
1 answer:
Rashid [163]1 year ago
6 0

The heat transferred to and the work produced by the steam during this process  is 13781.618 kJ/kg

<h3>​How to calcultae the heat?</h3>

The Net Change in Enthalpy will be:

= m ( h2 - h1 ) = 11.216 ( 1755.405 - 566.78 ) = 13331.618 kJ/kg

Work Done (Area Under PV curve) = 1/2 x (P1 + P2) x ( V1 - V2)

= 1/2 x ( 75 + 225) x (5 - 2)

W = 450 KJ

From the First Law of Thermodynamics, Q = U + W

So, Heat Transfer = Change in Internal Energy + Work Done

= 13331.618 + 450

Q = 13781.618 kJ/kg

Learn more about heat on:

brainly.com/question/13439286

#SP1

You might be interested in
A natural-draft cooling tower receives 250,000 ft3/min of air at standard atmospheric pressure, 70oF, and 45 percent relative hu
notsponge [240]

Find the attachment for complete solution

5 0
3 years ago
Additional scals apply to the
REY [17]
Location of the class depends on satiation
4 0
2 years ago
Consider the expansion of a gas at a constant temperature in a water-cooled piston-cylinder system. The constant temperature is
Leona [35]

Answer:

Q_{in} = W_{out} = nRT ln (\frac{V_{2}}{V_{1}})

Explanation:

According to the first thermodynamic law, the energy must be conserved so:

dQ = dU - dW

Where Q is the heat transmitted to the system, U is the internal energy and W is the work done by the system.

This equation can be solved by integration between an initial and a final state:

(1) \int\limits^1_2 {} \, dQ = \int\limits^1_2 {} \, dU - \int\limits^1_2 {} \, dW

As per work definition:

dW = F*dr

For pressure the force F equials the pressure multiplied by the area of the piston, and considering dx as the displacement:

dW = PA*dx

Here A*dx equals the differential volume of the piston, and considering that any increment in volume is a work done by the system, the sign is negative, so:

dW = - P*dV

So the third integral in equation (1) is:

\int\limits^1_2 {- P} \, dV

Considering the gas as ideal, the pressure can be calculated as P = \frac{n*R*T}{V}, so:

\int\limits^1_2 {- P} \, dV = \int\limits^1_2 {- \frac{n*R*T}{V}} \, dV

In this particular case as the systems is closed and the temperature constant, n, R and T are constants:

\int\limits^1_2 {- \frac{n*R*T}{V}} \, dV = -nRT \int\limits^1_2 {\frac{1}{V}} \, dV

Replacion this and solving equation (1) between state 1 and 2:

\int\limits^1_2 {} \, dQ = \int\limits^1_2 {} \, dU + nRT \int\limits^1_2 {\frac{1}{V}} \, dV

Q_{2} - Q_{1} = U_{2} - U_{1} + nRT(ln V_{2} - ln V_{1})

Q_{2} - Q_{1} = U_{2} - U_{1} + nRT ln \frac{V_{2}}{V_{1}}

The internal energy depends only on the temperature of the gas, so there is no internal energy change U_{2} - U_{1} = 0, so the heat exchanged to the system equals the work done by the system:

Q_{in} = W_{out} = nRT ln (\frac{V_{2}}{V_{1}})

4 0
3 years ago
The question belongs to Electrical Engineering (Linear System).
-Dominant- [34]
I’m crying looking at that.
5 0
3 years ago
I need ideas of usernames for a 2021 Jeep Wrangler Rubicon!!
rjkz [21]

Answer:

2021 super star wagon master

6 0
3 years ago
Other questions:
  • 1 2 3 4 5 6 7 8 9 10
    14·1 answer
  • Saturated steam coming off the turbine of a steam power plant at 40°C condenses on the outside of a 3-cm-outer-diameter, 35-m-lo
    7·1 answer
  • If you play roblox leave user down bellow
    14·2 answers
  • In the given circuit, V(t)=12cos(2000t+45)V, R1=R2=2Ω, L1=L2=L3=3mH and C1=250μF. You are required to find the Thevenin equivale
    7·1 answer
  • Two loads connected in parallel draw a total of 2.4 kW at 0.8 pf lagging from a 120-V rms, 60-Hz line. One load absorbs 1.5 kW a
    5·1 answer
  • Calculate total hole mobility if the hole mobility due to lattice scattering is 50 cm2 /Vsec and the hole mobility due to ionize
    5·2 answers
  • A cylindrical 1040 steel rod having a minimum tensile strength of 865 MPa (125,000 psi), a ductility of at least 10%EL, and a fi
    7·1 answer
  • an 8 N weight is placed at one end of a meterstick. a 10N weight is placed at the other end. where should the fulcrum be placed
    12·1 answer
  • Which of the following is MOST likely to be true about a service manager?
    8·1 answer
  • 3. (5%) you would like to physically separate different materials in a scrap recycling plant. describe at least one method that
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!