Answer:
0.774g of ethanol
0.970mL of ethanol
Explanation:
Molality is an unit of concentration defined as the ratio between moles of solute and kg of solvent.
In the problem, you need to prepare a 1.2m solution of ethanol (Solute) in t-butanol (solvent).
14.0g of butanol are <em>0.014kg </em>and as you want to prepare the 1.2m solution, you need to add:
0.014kg × (1.2moles / kg) = 0.0168 moles of solute = Moles of ethanol
To convert moles of ethanol to mass you require molar mass (Molar mass ethanol, C₂H₅OH = 46.07g/mol). Thus, mass of 0.0168 moles are:
0.0168moles Ethanol ₓ (46.07g / mol) =
<h3>0.774g of ethanol</h3>
And to convert mass in g to mL you require density of the substance (Density of ethanol = 0.798g/mL):
0.774g ₓ (1mL / 0.798g) =
<h3>0.970mL of ehtanol</h3>
Molality is one way of expressing concentration for solutions. It has units of moles of solute per kg of solvent. From the given values, we easily calculate for the moles of solute by multiplying the mass of solvent to the molality. We do as follows:
moles solute = 0.3 (10) = 3 mol solute
Answer:
c. law
Explanation:
Law -
It is type of statement , which helps to explain certain observations , in the form of mathematical relationship or verbal statements , is referred as a law .
Law is a widely accepted information , which can get altered by some new inventions or exception.
A law is stated in words as well as in the form of some mathematical relationships or equations.
Hence , from the given information of the question,
The correct option is c. law .
Answer:
Intermolecular forces are much weaker than the strong covalent bonds within the molecules. ... Very little energy is needed to overcome the intermolecular forces, so simple molecular substances usually have low melting and boiling points. They are often liquids or gases at room temperature
Answer:
0.48 moles
Explanation:
The bromide has a molarity of 2.6M.
This simply means that in 1dm^3 or 1000cm^3 of the solution, there are 2.6 moles.
Now, we need to get the number of moles in 185ml of the bromide. It is important to note that the measurement ml is the same as cm^3.
We calculate the number of moles as follows.
If 2.6mol is present in 1000ml
x mol will be present in 185 ml.
To calculate x = (185 * 2.6) ÷ 1000
= 0.481 moles = 0.48 moles to 2 s.f