ΔHrxn = ΣδΗ(bond breaking) - ΣδΗ(bond making)
Bond enthalpies,
N ≡ N ⇒ 945 kJ mol⁻¹
N - Cl ⇒ 192 kJ mol⁻¹
Cl - Cl⇒ 242 kJ mol⁻¹
According to the balanced equation,
ΣδΗ(bond breaking) = N ≡ N x 1 + Cl - Cl x 3
= 945 + 3(242)
= 1671 kJ mol⁻¹
ΣδΗ(bond making) = N - Cl x 3 x 2
= 192 x 6
= 1152 kJ mol⁻¹
δHrxn = ΣδΗ(bond breaking) - ΣδΗ(bond making)
= 1671 kJ mol⁻¹ - 1152 kJ mol⁻¹
= 519 kJ mol⁻¹
Answer:
2
Explanation:
The change of state occurs at a constant temperture and pressure. In the grahp we can see while the time passes, the temperature doesn't change.
The rect number 4 correspond to a liquid-gas phase
Answer:
Likely to gain electrons
Explanation:
The atom shown is likely to gain additional electrons to complete its electronic configuration.
- Since this is a neutral specie, the number of protons and electrons are the same.
- The atom has 16 electrons
- the number of valence electrons is 6
- If the atom gains two additional electrons, the octet configuration is attained
- Also, the atom can lose 6 electrons to become an octet
The atom will prefer to gain additional 2 electrons to give an octet configuration.
Heat required : 4.8 kJ
<h3>Further explanation
</h3>
The heat to change the phase can be formulated :
Q = mLf (melting/freezing)
Q = mLv (vaporization/condensation)
Lf=latent heat of fusion
Lv=latent heat of vaporization
The heat needed to raise the temperature
Q = m . c . Δt
1. heat to raise temperature from -20 °C to 0 °C

2. phase change(ice to water)

3. heat to raise temperature from 0 °C to 25 °C

