Answer:
Tension of 132N
Explanation:
We need to apply Summatory of Force to find the tension in the hand.
We define te tensión in the hand as
and the Tension in fence post as
, then


We apply summatory of moments then

Where the Force 2 is 1.25m from the center of summatory,
We can note that,

We have two equation and two incognites, then replacing (1) in (2)




Answer:
no ... hahahha! but I know every boys wait for the day when their heart beat is faster than normal ever in life
Answer:
a

b

c
Explanation:
From the question we are told that
The angle of incidence is 
The refractive index of water is 
Generally Snell's law is mathematically represented as

Here
is the refractive index of air with value 
is the angle of refraction
So
![\theta _2 = sin^{-1}[\frac{n_1 * sin(\theta _1)}{n_2} ]](https://tex.z-dn.net/?f=%5Ctheta%20_2%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7Bn_1%20%2A%20sin%28%5Ctheta%20_1%29%7D%7Bn_2%7D%20%5D)
=> ![\theta _2 = sin^{-1}[\frac{1.3 * sin(10)}{1} ]](https://tex.z-dn.net/?f=%5Ctheta%20_2%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7B1.3%20%2A%20sin%2810%29%7D%7B1%7D%20%5D)
=> 
Given that the angle should not be greater than
then the angle of incidence will be
![\theta _1 = sin^{-1}[\frac{n_2 * sin(\theta _2)}{n_1} ]](https://tex.z-dn.net/?f=%5Ctheta%20_1%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7Bn_2%20%2A%20sin%28%5Ctheta%20_2%29%7D%7Bn_1%7D%20%5D)
=> ![\theta _1 = sin^{-1}[\frac{1 * sin(45)}{1.3} ]](https://tex.z-dn.net/?f=%5Ctheta%20_1%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7B1%20%2A%20sin%2845%29%7D%7B1.3%7D%20%5D)
=> 
Generally for critical angle is mathematically represented as
![\theta_c = sin^{-1}[\frac{n_2}{n_1} ]](https://tex.z-dn.net/?f=%5Ctheta_c%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7Bn_2%7D%7Bn_1%7D%20%5D)
=>
=>