Answer:
160N/m
Explanation:
According to Hooke's law which states that the extension of an elastic material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically,
F = ke where
F is the applied force
k is the spring constant
e is the extension
From the formula k = F/e
Since the body accelerates when the block is released, F = ma according to Newton's second law of motion.
The spring constant k = ma/e where
m is the mass of the block = 0.4kg
a is the acceleration = 8.0m/s²
e is the extension of the spring = 2.0cm = 0.02m
K = 0.4×8/0.02
K = 3.2/0.02
K = 160N/m
The spring constant of the spring is therefore 160N/m
F=ma
F= 4x1.2
F= 4.8 N
F= 4gsin30 - Friction
Friction= 19.6 - 4.8 N
Friction= 14.8 N
Friction= u x 4gcos30
14.8 / 4gcos30 = u
u= 0.43596...
u= 0.44
coefficient is 0.44
The perceived frequency when the fire truck is moving toward you and away from you will be 370 Hz and 329.59 Hz respectively.
<h3>What is the Doppler effect?</h3>
A sudden change in the frequency due to the distance between the objects and source is explained by the doppler effect.
As the source and observer travel toward each other, the frequency of sound, light, or other waves increases or decreases.
The perceived frequency when the fire truck is moving toward you;

The perceived frequency when the fire truck is moving away from you;

Hence, the perceived frequency when the fire truck in cases 1 and 2 will be 370 Hz and 329.59 Hz.
To learn more about the doppler effect refer to the link;
brainly.com/question/15318474
#SPJ1
Answer:
a) V = 465.9 m/s
b) θ = 70.529°
Explanation:
Let's first calculate angular velocity of earth:

Velocity of a person on Ecuador will be:


For part b, since angular velocity is the same:

Solving for θ:

