1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rosijanka [135]
1 year ago
7

What is the correct procedure for mounting the m240 on the m122a1 tripod after the pintle is attached to the receiver?

Engineering
1 answer:
cluponka [151]1 year ago
8 0

Using the front sight adjusting tool, loosen (turn counterclockwise) the adjusting screw on the front sight assembly the desired amount. Then tighten (turn clockwise) the opposite side screw on the left exactly the same number of clicks.

<h3>What is a Machine gun ?</h3>

The term "machine gun" refers to a rifled, autoloading, fully automatic weapon intended for continuous direct fire using rifle rounds. Other automatic weapons, such as automatic rifles, are often intended to fire in brief bursts rather than continuously, and are not regarded as real machine guns because of this.

  • Machine guns and other automatic weapons vary in that they fire rounds continually until the shooter lets off of the trigger after pulling it once. Fully automatic guns are uncommon compared to semi-automatic rifles.

Learn more about Machine gun here:

brainly.com/question/1358898

#SPJ4

You might be interested in
Vital role of maritime english among seaferers
seropon [69]

Answer:

uehgeg7djw7heidiisosowiuisiejei2k

8 0
3 years ago
.a. What size vessel holds 2 kg water at 80°C such that 70% is vapor? What are the pressure and internal energy? b. A 1.6 m3 ves
vesna_86 [32]

Answer:

Part a: The volume of vessel is 4.7680m^3 and total internal energy is 3680 kJ.

Part b: The quality of the mixture is 90.3%  or 0.903, temperature is 120 °C and total internal energy is 4660 kJ.

Explanation:

Part a:

As per given data

m=2 kg

T=80 °C =80+273=353 K

Dryness=70% vapour =0.7

<em>From the steam tables at 80 °C</em>

Specific volume of saturated vapours=v_g=3.40527 m^3/kg

Specific volume of saturated liquid=v_f=0.00102 m^3/kg

Now the relation  of total specific volume for a specific dryness value is given as

                                  v=v_f+x(v_g-v_f)

Substituting the values give

v=v_f+x(v_g-v_f)\\v=0.00102+0.7(3.40527-0.00102)\\v_f=2.38399 m^3/kg

Now the volume of vessel is given as

v=\frac{V}{m}\\V=v \times m\\V=2.38399 \times 2\\V=4.7680 m^3

So the volume of vessel is 4.7680m^3.

Similarly for T=80 and dryness ratio of 0.7 from the table of steam

Pressure=P=47.4 kPa

Specific internal energy is given as u=1840 kJ/kg

So the total internal energy is given as

u=\frac{U}{m}\\U=u \times m\\U=1840 \times 2\\U=3680 kJ

The total internal energy is 3680 kJ.

So the volume of vessel is 4.7680m^3 and total internal energy is 3680 kJ.

Part b

Volume of vessel is given as 1.6

mass is given as 2 kg

Pressure is given as 0.2 MPa or 200 kPa

Now the specific volume is given as

v=\frac{V}{m}\\v=\frac{1.6}{2}\\v=0.8 m^3/kg

So from steam tables for Pressure=200 kPa and specific volume as 0.8 gives

Temperature=T=120 °C

Quality=x=0.903 ≈ 90.3%

Specific internal energy =u=2330 kJ/kg

The total internal energy is given as

u=\frac{U}{m}\\U=u \times m\\U=2330 \times 2\\U=4660 kJ

So the quality of the mixture is 90.3%  or 0.903, temperature is 120 °C and total internal energy is 4660 kJ.

5 0
2 years ago
11–17 A long, thin-walled double-pipe heat exchanger with tube and shell diameters of 1.0 cm and 2.5 cm, respectively, is used t
lana [24]

Answer:

the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C

Explanation:

Given:

d₁ = diameter of the tube = 1 cm = 0.01 m

d₂ = diameter of the shell = 2.5 cm = 0.025 m

Refrigerant-134a

20°C is the temperature of water

h₁ = convection heat transfer coefficient = 4100 W/m² K

Water flows at a rate of 0.3 kg/s

Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?

First at all, you need to get the properties of water at 20°C in tables:

k = 0.598 W/m°C

v = 1.004x10⁻⁶m²/s

Pr = 7.01

ρ = 998 kg/m³

Now, you need to calculate the velocity of the water that flows through the shell:

v_{w} =\frac{m}{\rho \pi (\frac{d_{2}^{2}-d_{1}^{2}  }{4} )} =\frac{0.3}{998*\pi (\frac{0.025^{2}-0.01^{2}  }{4}) } =0.729m/s

It is necessary to get the Reynold's number:

Re=\frac{v_{w}(d_{2}-d_{1}) }{v} =\frac{0.729*(0.025-0.01)}{1.004x10^{-6} } =10891.4343

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

Nu=0.023Re^{0.8} Pr^{0.4} =0.023*(10891.4343)^{0.8} *(7.01)^{0.4} =85.0517

The overall heat transfer coefficient:

Q=\frac{1}{\frac{1}{h_{1} }+\frac{1}{h_{2} }  }

Here

h_{2} =\frac{kNu}{d_{2}-d_{1}} =\frac{0.598*85.0517}{0.025-0.01} =3390.7278W/m^{2}C

Substituting values:

Q=\frac{1}{\frac{1}{4100}+\frac{1}{3390.7278}  } =1855.8923W/m^{2} C

5 0
3 years ago
If you were to plot the voltage versus the current for a given circuit, what would you expect the slope of the line to be? If no
Brut [27]

Answer:

Part 1: It would be a straight line, current will be directly proportional to the voltage.

Part 2: The current would taper off and will have negligible increase after the voltage  reaches a certain  value. Graph attached.

Explanation:

For the first part, voltage and current have a linear relationship as dictated by the Ohm's law.

V=I*R

where V is the voltage, I is the current, and R is the resistance. As the Voltage increase, current is bound to increase too, given that the resistance remains constant.

In the second part, resistance is not constant. As an element heats up, it consumes more current because the free sea of electrons inside are moving more rapidly, disrupting the flow of charge. So, as the voltage increase, the current does increase, but so does the resistance. Leaving less room for the current to increase. This rise in temperature is shown in the graph attached, as current tapers.

7 0
3 years ago
A seamless pipe 800mm diameter contains a fluid under a pressure of 2N/mm2. If the permissible tensile stress is 100N/mm2, find
Bad White [126]

Answer:

8 mm

Explanation:

Given:

Diameter, D = 800 mm

Pressure, P = 2 N/mm²

Permissible tensile stress, σ = 100 N/mm²

Now,

for the pipes, we have the relation as:

\sigma=\frac{\textup{PD}}{\textup{2t}}

where, t is the thickness

on substituting the respective values, we get

100=\frac{\textup{2\times800}}{\textup{2t}}

or

t = 8 mm

Hence, the minimum thickness of pipe is 8 mm

3 0
2 years ago
Other questions:
  • Explain the use of the Kanban system in a production line?
    7·1 answer
  • A __ insulated panel consists of a layer of insulating foam between two osb or plywood panels
    14·2 answers
  • How much work is performed if a 400 lb weight is lifted 10 ft ?
    8·1 answer
  • Amplifiers are extensively used in the baseband portion of a radio receiver system to condition the baseband signal to produce a
    5·1 answer
  • To remove a spark plug the technician would need a(n) ___socket​
    7·2 answers
  • Compared with space operations specialists, intelligence officers are which of the following?
    7·1 answer
  • Who wanna learn C# for free tell me​
    10·1 answer
  • Water is pumped from a lake to a storage tank 18 m above at a rate of 70 L/s while consuming 20.4 kW of electric power. Disregar
    13·1 answer
  • Write a program that takes three numbers as input from the user, and prints the largest.
    12·1 answer
  • What is the law of physics<br><br><br> 10 points if you tell me the answer and your name
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!