Answer:
Mechanical resonance frequency is the frequency of a system to react sharply when the frequency of oscillation is equal to its resonant frequency (natural frequency).
The physical dimension of the silicon is 10kg
Explanation:
Using the formular, Force, F = 1/2π√k/m
At resonance, spring constant, k = mw² ( where w = 2πf), when spring constant, k = centripetal force ( F = mw²r).
Hence, F = 1/2π√mw²/m = f ( f = frequency)
∴ f = F = mg, taking g = 9.8 m/s²
100 Hz = 9.8 m/s² X m
m = 100/9.8 = 10.2kg
Explanation:
The correct answers to the fill in the blanks would be;
1. Viscoelastic stress relaxation refers to scenarios for which the stress applied to a polymer must decay over time in order to maintain a constant strain. Otherwise, over time, the polymer chains will slip and slide past one another in response to a constant applied load and the strain will increase (in magnitude).
2. Viscoelastic creep refers to scenarios for which a polymer will permanently flow over time in response a constant applied stress.
The polymer whose properties have been mentioned above is commonly known as Kevlar.
It is mostly used in high-strength fabrics and its properties are because of several hydrogen bonds between polymer molecules.
The Pareto principle is that most things in our life are not commonly distributed.
<u>Explanation:</u>
Pareto chart shows that most of the things which we have in our life and the resources in our life are not equally distributed. The ratio is not always 50:50 according to this principle.
The most important use of a Pareto diagram is to show the most important factor among the set of factors that have been shown. Along with that it also shows the sources which lead to the common defects in the system and tries to solve those defects which occur most often.