To
determine the percent ionization of the acid given, we make use of the acid
equilibrium constant (Ka) given. It is the ration of the equilibrium
concentrations of the dissociated ions and the acid. The dissociation reaction
of the HF acid would be as follows:<span>
HF = H+ + F-
The acid equilibrum constant would be expressed as follows:
Ka = [H+][F-] / [HF] = 3.5 x 10-4
To determine the equilibrium concentrations we use the ICE table,
HF
H+ F-
I 0.337 0
0
C -x +x
+x
---------------------------------------------
E 0.337-x x
x
3.5 x 10-4 = [H+][F-] / [HF]
3.5 x 10-4 = [x][x] / [0.337-x] </span>
Solving for x,
x = 0.01069 = [H+] = [F-]
percent ionization = 0.01069 / 0.337 x 100 = 3.17%
Mars........................
Answer:
pH 
Explanation:
For every mole of hydrochloric acid, one mole of hydronium ion is required. Thus, in order to neutralize 0.014 moles of HCL, 0.014 moles of hydronium is required.
![[H_3O^+] = [HCl] = 0.014](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%20%3D%20%5BHCl%5D%20%3D%200.014)
pH ![= -log [H^+] = -log [H_3O^+]](https://tex.z-dn.net/?f=%3D%20-log%20%5BH%5E%2B%5D%20%3D%20-log%20%5BH_3O%5E%2B%5D)
Substituting the available values in above equation, we can say that the pH of the solution is equal to

pH 
pH of a
M HCL solution 
Answer:
i think mix im um 1s 6f 4d is correct answer
Answer:
185.05 g.
Explanation
Firstly, It is considered as a stichiometry problem.
From the balanced equation: 2LiCl → 2Li + Cl₂
It is clear that the stichiometry shows that 2.0 moles of LiCl is decomposed to give 2.0 moles of Li metal and 1.0 moles of Cl₂, which means that the molar ratio of LiCl : Li is (1.0 : 1.0) ratio.
We must convert the grams of Li metal (30.3 g) to moles (n = mass/atomic mass), atomic mass of Li = 6.941 g/mole.
n = (30.3 g) / (6.941 g/mole) = 4.365 moles.
Now, we can get the number of moles of LiCl that is needed to produce 4.365 moles of Li metal.
Using cross multiplication:
2.0 moles of LiCl → 2.0 moles of Li, from the stichiometry of the balanced equation.
??? moles of LiCl → 4.365 moles of Li.
The number of moles of LiCl that will produce 4.365 moles of Li (30.3 g) is (2.0 x 4.365 / 2.0) = 4.365 moles.
Finally, we should convert the number of moles of LiCl into grams (n = mass/molar mass).
Molar mass of LiCl = 42.394 g/mole.
mass = n x molar mass = (4.365 x 42.394) = 185.05 g.