iodine which should appear before tellurium and argon which should appear after potassium
There is a 3rd one: nickel should appear before cobalt
THE ALTERNATIVE IS 4.8g alternative c
Answer:
23.34 %.
Explanation:
- The percentage of water must be calculated as a mass percent.
- We need to find the mass of water, and the total mass in one mole of the compound. For that we need to use the atomic masses of each element and take in consideration the number of atoms of each element in the formula unit.
- <em>Atomic masses of the elements:</em>
Cd: 112.411 g/mol, N: 14.0067 g/mol, O: 15.999 g/mol, and H: 1.008 g/mol.
- <em>Mass of the formula unit:</em>
Cd(NO₃)₂•4H₂O
mass of the formula unit = (At. mass of Cd) + 2(At. mass of N) + 10(At. mass of O) + 8(At. mass of H) = (112.411 g/mol) + 2(14.0067 g/mol) + 10(15.999 g/mol) + 8(1.008 g/mol) = 308.5 g/mol.
- <em> Mass of water in the formula unit:</em>
<em>mass of water</em> = (4 × 2 × 1.008 g/mol) + (4 × 15.999 g/mol) = 72.0 g/mol.
- <em>So, the percent of water in the compound = [mass of water / mass of the formula unit] × 100 = [(72.0 g/mol)/(308.5 g/mol)] × 100 = 23.34 %</em>
The equilibrium reaction, causes the water dissociation constant, Kw, is 1.01 × 10-14<span> at 25 °C. That is because every H</span>+<span> (H</span>3O+) ion these forms accompanied by the formation of an OH-<span> ion, are the concentrations of these ions and in pure water the same thing can be calculated from </span>Kw<span>.
HOPED THIS HELP OUT ;)
</span>
A.2SO₂ + O₂ + 2H₂O → 2H₂SO₄
B.Moles of SO₂ = 67.2 / 22.4Moles of SO₂ = 3 molesMoles of H₂SO₄ = 3 molesMass of H₂SO₄ = 3 x 98Mass of H₂SO₄ = 294 grams
Assuming sulfuric acid to have the same density as water,density = 1000 g / LVolume = mass / densityVolume = 294 / 1000Volume = 0.29 liters of sulfuric acid