First you have to find the number of moles , then you have to apply stoichometry to find the number of moles of H2 gas , after that you can determine its mass.
Explanation:
Step 1:
Data obtained from the question. This include the following:
Initial pressure (P1) = 1atm
Initial temperature (T1) = 0°C = 0°C + 273 = 273K
Final temperature (T2) = 280°C = 280°C + 273 = 553K
Final pressure (P2) =...?
Step 2:
Determination of the new pressure of the gas.
Since the volume of the gas is constant, the following equation:
P1/T1 = P2/T2
will be used to obtain the pressure. This is illustrated below:
P1/T1 = P2/T2
1/273 = P2 / 553
Cross multiply
273x P2 = 553
Divide both side by 273
P2 = 553/273
P2 = 2.03atm
Therefore, the new pressure of the gas will be 2.03atm
Answer: the value of X is 1
Co2O3.XH2O = Co2O3.H20
Explanation:Please see attachment for explanation
Answer:
152 kPa = Partial pressure O₂
Explanation:
Data by percent is the molar fraction . 100.
Molar fraction of Helium = 32/ 100 → 0.32
Molar fraction of O₂ = 68/100 → 0.68
Sum of molar fractions in a mixture = 1
0.68 + 0.32 = 1
If we apply the molar fraction, we can determine the partial pressure.
Mole fraction = Partial pressure / Total pressure
0.32 = Partial pressure O₂ / 475kPa → 0.32 . 475 kPa = Partial pressure O₂
152 kPa = Partial pressure O₂
The decrease in velocity is called deceleration or negative acceleration.
Hope i helped... If you need anything else ask me! :)