Answer:
The force increases because it is part of a Newton’s third law pair of forces with the force that the star exerts on the planet.
Explanation:
Force between two objects can be expressed by an equation:
F = G • m1 • m2 / r^2,
where m1 and m2 are objects' masses, r is the distance between them, and G is a gravitational constant.
That means that greater the masses or lesser the distance, the force will be greater, and vice versa.
This force exists between any two objects, but is generally extremely weak, so it's best observed with big and large objects with great mass, such as planets and stars.
This force, whatever its magnitude may be, always works on both objects, following the third Newton's law.
So, whatever the force the stat exerts on the planet is, the planet will exert the same amount of force on the star.
Metals become shiny when light is pointed at them.
Answer:
Presence of lone pairs of electrons
Explanation:
According to VSEPR theory, the presence of lone pairs caused increased repulsion of electron pairs on the valence shell of the centeral atom of the molecule. This decreases or distorts the bond angle. The decrease in bond ange depends on the number of lone pairs present on the valence shell of the central atom of the molecule. Ammonia has only one lone pair hence the bond angle is 107°, water has two lone pairs and the bond angle is 104°. Compare this this with the bond angle of 109° in methane which has only bond pairs and no lone pairs.
Answer:
Non-example – creating energy, losing energy. Energy sources - The places we get energy from for heat and electricity. Examples – coal, sun, wind. Non-example – socket, batteries. Energy transformation - The movement of energy where the energy changes forms.
Explanation:
Hope this helps :)
Answer:
the water evaporates into the carbon dioxide
Explanation:
i just know by heart