So first make a force diagram. I would label forward forces + and backward forces -. Essentially, the drag force is equal to the Ft (force of tension) + Ff (force of friction on snowmobile - driver system). The force of Friction is equal to mu * Fn. We can find mu through the force of friction acting on the sled. 120 N = mu * Fn (equal to m * g of sled). mu of the Ice is equal to 0.167. So, 540 N = Ft + 0.167 * 4500 N. Ft = -211.5 N. <u>Ft is acting in the backwards direction at a magnitude of 211.5 N</u>
The Electric current is 1.11* 10^{-4}A
Given that the coil's radius is 3.55 cm (0.35 m),
The formula for the coil's area is A = r2 A = (3.14) (0.35)2 = 0.005024 m2.
R = Resistance = 600 N = Number of spins = 500 B = Magnetic field = (0.0120)
t + (3 x 10⁻⁵) t⁴
The number t = 5 is substituted for taking the derivative at both the induced current and the electric current.
The Electric current is therefore 1.11* 10^{-4}A
Electric current - The rate of electron passage in a conductor is known as electric current. The ampere is the electric current's SI unit. Electrons are little particles that are part of a substance's molecular structure. These electrons can be held loosely or securely depending on the situation.
To learn more about electric current please visit -brainly.com/question/12791045
#SPJ1
Answer:
a) 1.3 rad/s
b) 0.722 s
Explanation:
Given
Initial velocity, ω = 0 rad/s
Angular acceleration of the wheel, α = 1.8 rad/s²
using equations of angular motion, we have
θ2 - θ1 = ω(0)[t2 - t1] + 1/2α(t2 - t1)²
where
θ2 - θ1 = 53.2 rad
t2 - t1 = 7s
substituting these in the equation, we have
θ2 - θ1 = ω(0)[t2 - t1] + 1/2α(t2 - t1)²
53.2 =ω(0) * 7 + 1/2 * 1.8 * 7²
53.2 = 7.ω(0) + 1/2 * 1.8 * 49
53.2 = 7.ω(0) + 44.1
7.ω(0) = 53.2 - 44.1
ω(0) = 9.1 / 7
ω(0) = 1.3 rad/s
Using another of the equations of angular motion, we have
ω(0) = ω(i) + α*t1
1.3 = 0 + 1.8 * t1
1.3 = 1.8 * t1
t1 = 1.3/1.8
t1 = 0.722 s