Answer:
I would say B but i am not sure hope it helps
Explanation:
Answer:
588.2 mL
Explanation:
- FeSO₄(aq) + 2KOH(aq) → Fe(OH)₂(s) + K₂SO₄(aq)
First we <u>calculate how many Fe⁺² moles reacted</u>, using the given <em>concentration and volume of FeSO₄ solution</em> (the number of FeSO₄ moles is equal to the number of Fe⁺² moles):
- moles = molarity * volume
- 187 mL * 0.692 M = 129.404 mmol Fe⁺²
Then we convert Fe⁺² moles to KOH moles, using the stoichiometric ratios:
- 129.404 mmol Fe⁺² *
= 258.808 mmol KOH
Finally we<u> calculate the required volume of KOH solution</u>, using <em>the given concentration and the calculated moles</em>:
- volume = moles / molarity
- 258.808 mmol KOH / 0.440 M = 588.2 mL
1 mole = 6.02 * 10^23 atoms
This is known as Avogadro's Number. This value is approximate.
Answer:
b. I've seen a question like this before lol
Answer:
W=-37.6kJ, therefore, work is done on the system.
Explanation:
Hello,
In this case, the first step is to compute the moles of each gas present in the given mixture, by using the total mixture weight the mass compositions and their molar masses:

Next, the total moles:

After that, since the process is isobaric, we can compute the work as:

Therefore, we need to compute both the initial and final volumes which are at 260 °C and 95 °C respectively for the same moles and pressure (isobaric closed system)

Thereby, the magnitude and direction of work turn out:

Thus, we conclude that since it is negative, work is done on the system (first law of thermodynamics).
Regards.