Chemical- it produces ammonia.
<span>Answer is </span>(3)
- Sodium Nitrate.<span>
</span>Normally ionic bonds can be seen between
metals and non-metals while covalent
bonds present between
non-metals. Another thing that determines the bond nature is electronegativity
value of the atoms.
If the electronegativity difference
is high, then that bond tends to be an ionic bond.<span>
</span><span>Sodium nitrate consists of </span>Na⁺<span> and </span>NO₃⁻ ions. Hence, the bond
between Na⁺ and NO₃⁻<span> is an </span>ionic
bond. <span><span>
NO</span>₃⁻ </span><span>is made from </span>N <span>and </span>O<span>. Both are </span>non-metallic
atoms. <span>The </span>electronegativities <span>of </span>N <span>and </span>O <span>are </span>3.0 <span>and </span>3.5 <span>respectively. Hence, there is </span>no
big difference between
electronegativity values (3.5 - 3.0 = 0.5<span>). Hence, the bond
between N and O is a </span><span>covalent
bond. </span>
The cyanide is

A carbon atom has 4 valance electrons and nitrogen has 5. Below is a Lewis-dot-structure of cyanide.
:N≡C.
The carbon atom is still one electron short of having a full octet and so it will seize another electron from almost anything, making the cyanide ion negative and whatever it took the electron from it now positive.
Answer:
4H₂O₂ → 4H₂O + 2O₂
Explanation:
The chemical reaction for the decomposition of hydrogen peroxide can be represented as follows;
2H₂O₂ → 2H₂O + O₂
Therefore, two molecules of hydrogen peroxide decomposes into two molecules of water and one molecule of oxygen.
In a related diagram, we have 4 molecules of hydrogen peroxide decomposing, therefore we have;
4H₂O₂ → 4H₂O + 2O₂
The attached diagram shows the products of the decomposition of the four molecules of hydrogen peroxide.