Answer:
= 3.36 mm
Explanation:
From Ohm's law,
(Voltage = Current * Resistance)

The geometric definition of resistance is

where
is the resistivity of the material,
and
are the length and cross-sectional area, respectively.


Since the wire is assumed to have a circular cross-section, its area is given by
where
is the diameter.


Resistivity of copper =
. With these and other given values,



Newton’s Second Law concerns the generation of force based on an object’s mass and acceleration, as described by the equation F=ma.
Hope this helps!
To place the poles of a 1. 5 v battery to achieve the same electric field is 1.5×10−2 m
The potential difference is related to the electric field by:
∆V=Ed
where,
∆V is the potential difference
E is the electric field
d is the distance
what is potential difference?
The difference in potential between two points that represents the work involved or the energy released in the transfer of a unit quantity of electricity from one point to the other.
We want to know the distance the detectors have to be placed in order to achieve an electric field of
E=1v/cm=100v/cm
when connected to a battery with potential difference
∆v=1.5v
Solving the equation,we find



learn more about potential difference from here: brainly.com/question/28166044
#SPJ4
Find the force that would be required in the absence of friction first, then calculate the force of friction and add them together. This is done because the friction force is going to have to be compensated for. We will need that much more force than we otherwise would to achieve the desired acceleration:

The friction force will be given by the normal force times the coefficient of friction. Here the normal force is just its weight, mg

Now the total force required is:
0.0702N+0.803N=0.873N