The particles of the medium (slinky in this case) move up and down (choice #2) in a transverse wave scenario.
This is the defining characteristic of transverse waves, like particles on the surface of water while a wave travels on it, or like particles in a slack rope when someone sends a wave through by giving it a jolt.
The other kind of waves is longitudinal, where the particles of the medium move "left-and-right" along the direction of the wave propagation. In the case of the slinky, this would be achieved by giving a tensioned slinky an "inward" jolt. You would see that such a jolt would give rise to a longitudinal wave traveling along the length of the tensioned slinky. Another example of longitudinal waves are sound waves.
Mechanical energy E = mgh + 1/2mv²
When he starts, let h = 0 ⇒ E₁ = 1/2mv₁²
When he reaches height h ⇒ E₂ = mgh + 1/2mv₂²
Without friction, energy is conserved at all times.
E₁ = E₂
↓
1/2mv₁² = mgh + 1/2mv₂²
↓
1/2v₁² = gh + 1/2v₂²
↓
gh = 1/2(v₁² - v₂²)
↓
h = (v₁² - v₂²) / (2g)
Answer:
|x| = √53
Explanation:
We are told that the vector starts at the point (0.0) and ends at (2,-7) .
Thus, magnitude of displacement is;
|x| = √(((-7) - 0)² + (2 - 0)²)
|x| = √(49 + 4)
|x| = √53