Answer : The molar mass of an acid is 266.985 g/mole
Explanation : Given,
Mass of an acid (HX) = 4.7 g
Volume of NaOH = 32.6 ml = 0.0326 L
Molarity of NaOH = 0.54 M = 0.54 mole/L
First we have to calculate the moles of NaOH.

Now we have to calculate the moles of an acid.
In the titration, the moles of an acid will be equal to the moles of NaOH.
Moles of an acid = Moles of NaOH = 0.017604 mole
Now we have to calculate the molar mass of and acid.

Now put all the given values in this formula, we get:


Therefore, the molar mass of an acid is 266.985 g/mole
<span>Using PV=nRT to find the moles and then convert back.
</span><span>4x=.8944
</span><span>solve for x then use the pressure for lets say CO2 put that into PV=nRT then solve for n then convert over.
</span>
<span>(.2236)(2)/(298*.08206) = .0183*96g/mol = 1.76g
</span>
<span>For C:
[NH3]^2[CO2][H2O] = Kp
x=0.2236
(2*.2236)^2(.2236)*(.2236)
=0.001
</span>
The two most abundant elements in Earths core are Iron and Nickel.
Hope this helps!
A gauge records the pressure over atmospheric pressure (0kpa on the gauge is actually the atmospheric pressure and a reading of 276kpa is 276kpa over atmospheric pressure). That means that means that to find absolute pressure you just add atmospheric pressure (around 1atm (101kpa)) to 286kpa to get 387kpa. I hope this helps.