Answer:
V₁ = 10 mL
Explanation:
Given data:
Initial volume of HCl = ?
Initial molarity = 3.0 M
Final molarity = 0.10 M
Final volume = 300.0 mL
Solution:
Formula:
M₁V₁ = M₂V₂
M₁ = Initial molarity
V₁ = Initial volume of HCl
M₂ =Final molarity
V₂ = Final volume
Now we will put the values.
3.0 M ×V₁ = 0.10 M×300.0 mL
3.0 M ×V₁ = 30 M.mL
V₁ = 30 M.mL /3.0 M
V₁ = 10 mL
I think the correct answer from the choices listed above is the first option. She concluded that the reaction is an exothermic one because t<span>he reaction released heat. Exothermic is when heat goes out of the system. The opposite is referred to as an endothermic reaction.</span>
The white stuff we know as sugar is sucrose, a molecule composed of 12 atoms of carbon<span>, 22 atoms of </span>hydrogen<span>, and 11 atoms of </span>oxygen<span> (C</span>12H22O11<span>). Like all </span>compounds<span> made from these three elements, sugar is a </span>carbohydrate<span>.</span>
<span>PBr5
You started with 0.72 mg of phosphorus and ended up with 10.01 mg of its bromide. So the amount of bromine is 10.01 - 0.72 = 9.29 mg
Now you need to determine the relative number of atoms of each element used.
atomic mass of phosphorus = 30.973762
atomic mass of bromine = 79.904
relative atoms of phosphorus = 0.72 / 30.973762 = 0.023245
relative atoms of bromine = 9.29 / 79.904 = 0.116265
Now you need to look for a simple ratio of integers that closely approximates 0.023245 / 0.116265. First we'll divide the larger by the smaller.
0.116265 / 0.023245 = 5.001597
Given how close the value comes to 5. The empirical formula will be PBr5. So for every atom of phosphorus, you need 5 atoms of bromine.</span>