Answer:
Check below for the explanation
Explanation:
Since it is stated that the ring is dropped from a height, h, through a non uniform magnetic field, two kinds of force will act on the ring, namely:
- A magnetic force (that is non uniform since the field is non uniform)
- Gravitational force
A certain amount of torque is provided by the non uniform magnetic force on the ring while the force gravity pulls it down. Due to the downward pull by the force of gravity on the ring and the torque acting on it as a result of the non uniform magnetic force, the ring begins to rotate.
I can help you with that if you translate to English
Answer:
When conducting research, scientists use the scientific method to collect measurable, empirical evidence in an experiment related to a hypothesis (often in the form of an if/then statement), the results aiming to support or contradict a theory.
I HOPE ITS RIGHT
Answer:
Explanation:
Comet is made by dust particles, icy particles, gases etc.
A comet has a fixed time to complete a revolution around the sun.
As a comet comes nearer to the sun, due to the heat of the sun the vapour and the icy particles becomes gases and due to the radial pressure of energy od sun, we observe a tail of comet which has vapours mainly. SI the comet is visible easily.
<span>4.5 m/s
This is an exercise in centripetal force. The formula is
F = mv^2/r
where
m = mass
v = velocity
r = radius
Now to add a little extra twist to the fun, we're swinging in a vertical plane so gravity comes into effect. At the bottom of the swing, the force experienced is the F above plus the acceleration due to gravity, and at the top of the swing, the force experienced is the F above minus the acceleration due to gravity. I will assume you're capable of changing the velocity of the ball quickly so you don't break the string at the bottom of the loop.
Let's determine the force we get from gravity.
0.34 kg * 9.8 m/s^2 = 3.332 kg m/s^2 = 3.332 N
Since we're getting some help from gravity, the force that will break the string is 9.9 N + 3.332 N = 13.232 N
Plug known values into formula.
F = mv^2/r
13.232 kg m/s^2 = 0.34 kg V^2 / 0.52 m
6.88064 kg m^2/s^2 = 0.34 kg V^2
20.23717647 m^2/s^2 = V^2
4.498574938 m/s = V
Rounding to 2 significant figures gives 4.5 m/s
The actual obtainable velocity is likely to be much lower. You may handle 13.232 N at the top of the swing where gravity is helping to keep you from breaking the string, but at the bottom of the swing, you can only handle 6.568 N where gravity is working against you, making the string easier to break.</span>