Compared to the pucks given, the pair of pucks will rotate at the same rate.
Answer: Option A
<u>Explanation:</u>
The law of conservation of the angular momentum expresses that when no outer torque follows upon an article, no difference in angular momentum will happen. At the point when an item is turning in a shut framework and no outside torques are applied to it, it will have no change in angular momentum.
The conservation of the angular momentum clarifies the angular quickening of an ice skater as she brings her arms and legs near the vertical rotate of revolution. In the event, that the net torque is zero, at that point angular momentum is steady or saved.
By twice the mass yet keeping the speeds unaltered, also twice the angular momentum's to the two-puck framework. Be that as it may, we likewise double the moment of inertia. Since
, the turning rate of the two-puck framework must stay unaltered.
Answer:
Waves can be measured using wavelength and frequency. ... The distance from one crest to the next is called a wavelength (λ). The number of complete wavelengths in a given unit of time is called frequency (f). As a wavelength increases in size, its frequency and energy (E) decrease.
Answer:
The initial velocity was U=22.14m/s
Explanation:
Step one :
Applying the third equation of motion
v² = u²+ 2as
Where v= Final velocity
U =initial velocity
a= acceleration due to gravity
S= distance or displacement
Step two :
V= 0
a= 9.81m/s²
S=25m
U=?
Step three :
Substituting into the equation we have
0²=U²+2*9.81*25
0=U²+490.5
U²=-490.5
U=√490.5
U=22.14m/s
Answer:
4.08 s
Explanation:
Let the passenger took "t" time to catch the train
so in this case the total distance moved by the train + 5 m = total distance moved by the passenger
so we will have
distance moved by train is given as

also the distance moved by passenger

so we will have



t = 4.08 s