Because gravity accelerates all objects the same regardless of their mass
Answer:
The velocity of the boat with respect to the ground is 3 km/h
Explanation:
The speed of an object is different depending on the reference system you use. This is called relative speed.
A boat travels upstream, this means that it moves in the opposite direction to the river current.
A boat travels upstream, this means that it moves in the opposite direction to the river current. Then, if the boat moves in the positive direction of the x axis at 10 km / h with respect to the water of a river, the water flows in the negative direction of the x axis at 7 km / h with respect to the ground.
This causes the speed of the boat relative to the ground to be calculated as follows:
<em>VbG = Vbw - VwG
</em>
where VbG is the speed of the boat relative to the ground, Vbw is the speed of the boat relative to the water of the river and VwG is the speed of the water relative to the ground.
So: VbG=10 km/h – 7 km/h
<u><em>VbG= 3 km/h
</em></u>
The direction of this velocity is in the positive x-direction.
The answer is true. The table does show an object moving with changing speed.
Answer:
X: Always attractive
Y: Infinite range
Z: Attractive or repulsive
ANSWER IS C
2.71 m/s fast Hans is moving after the collision.
<u>Explanation</u>:
Given that,
Mass of Jeremy is 120 kg (
)
Speed of Jeremy is 3 m/s (
)
Speed of Jeremy after collision is (
) -2.5 m/s
Mass of Hans is 140 kg (
)
Speed of Hans is -2 m/s (
)
Speed of Hans after collision is (
)
Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is
= 
Substitute the given values,
= 120 × 3 + 140 × (-2)
= 360 + (-280)
= 80 kg m/s
Linear momentum after the collision of Jeremy and Hans is
= 
= 120 × (-2.5) + 140 × 
= -300 + 140 × 
We know that conservation of liner momentum,
Linear momentum before the collision = Linear momentum after the collision
80 = -300 + 140 × 
80 + 300 = 140 × 
380 = 140 × 
380/140= 
= 2.71 m/s
2.71 m/s fast Hans is moving after the collision.