Answer:
false
Explanation:
As we know that in sodium-potassium pump .
sodium potassium move 3Na+ outside the cells
and moving 2k+ inside the cells
so that we can say that given statement is false
Answer FALSE
Answer: The mole ratio of hydrogen to nitrogen is 3 mole: 1 mole, 3:1
Explanation:
•Mole ratios are determined using the coefficients of the substances in the balanced chemical equation. •Each coefficient represents the number of mole of each substance in the chemical reaction.
•The mole ratio can be determined by first writing out a balanced chemical equation for the reaction.
For this reaction the balanced chemical equation is
N2(g) + 3H2(g) ----> 2NH3(g)
1mol:3mol : 2mol
From the equation we can see that 1 mole of N2(g) reacts with 3 moles of H2(g) or 3 moles of H2(g) react with 1 mole of N2(g) to produce 2 moles of NH3(g).
Therefore, the mole ratio of hydrogen to nitrogen is 3 mole: 1 mole, 3:1
Explanation:
Lithium diisopropylamide (LDA) is used in many organic synthesis and is a strong base. It is prepared by the acid base reaction of N,N-diisopropylamine ( [(CH₃)₂CH]₂NH ) and butyllithium ( Li⁺⁻CH₂CH₂CH₂CH₃ ).
The equation is show below as:
[(CH₃)₂CH]₂NH + Li⁺⁻CH₂CH₂CH₂CH₃ ⇒ [(CH₃)₂CH]₂N⁻Li⁺ + CH₃CH₂CH₂CH₃
N,N-diisopropylamine ( [(CH₃)₂CH]₂NH ) is a weaker acid and hence, LDA ( [(CH₃)₂CH]₂N⁻Li⁺ ) is stronger base. (Weaker acid has stronger conjugate base)
Butyllithium ( Li⁺⁻CH₂CH₂CH₂CH₃ ) is a very strong base and hence, butane ( CH₃CH₂CH₂CH₃ ) is a very weak acid. (Strong base has weaker conjugate acid)
Answer:
(a) H₃O⁺(aq) + H₂PO₄⁻(aq) ⟶ H₃PO₄(aq) + H₂O(ℓ)
(b) OH⁻(aq) + H₃O⁺(aq) ⟶ 2H₂O(ℓ)
Explanation:
The equation for your buffer equilibrium is:
H₃PO₄(aq) + H₂O(ℓ) ⇌ H₃O⁺(aq)+ H₂PO₄⁻(aq)
(a) Adding H₃O⁺
The hydronium ions react with the basic dihydrogen phosphate ions.
H₃O⁺(aq) + H₂PO₄⁻(aq) ⟶ H₃PO₄(aq) + H₂O(ℓ)
(b) Adding OH⁻
The OH⁻ ions react with the more acidic hydronium ions.
OH⁻(aq) + H₃O⁺(aq) ⟶ 2H₂O(ℓ)