Answer:
Time taken for trip = 12.74 hour (Approx)
Explanation:
Given:
Distance of trip = 710-mi
Average speed for the trip = 55.7 mi/h
Find:
Time taken for trip = ?
Computation:
⇒ Time = Distance / Speed
⇒ Time taken for trip = Distance of trip / Average speed for the trip
⇒ Time taken for trip = 710-mi / 55.7 mi/h
⇒ Time taken for trip = 12.74 hour (Approx)
Answer:
a. 1.027 x 10^7 m/s b. 3600 V c. 0 V and d. 1.08 MeV
Explanation:
a. KE =1/2 (MV^2) where the M is mass of electron
b. E = V/d
c. V= 0 V (momentarily the pd changes to zero)
d KE= 300*3600 v = 1.08 MeV
Answer:
The amount of kilograms of ice at -20.0°C that must be dropped into the water to make the final temperature of the system 40.0°C = 0.0674 kg
Explanation:
Heat gained by ice in taking the total temperature to 40°C = Heat lost by the water
Total Heat gained by ice = Heat used by ice to move from -20°C to 0°C + Heat used to melt at 0°C + Heat used to reach 40°C from 0°C
To do this, we require the specific heat capacity of ice, latent heat of ice and the specific heat capacity of water. All will be obtained from literature.
Specific heat capacity of ice = Cᵢ = 2108 J/kg.°C
Latent heat of ice = L = 334000 J/kg
Specific heat capacity of water = C = 4186 J/kg.°C
Heat gained by ice in taking the total temperature to 40°C = mCᵢ ΔT + mL + mC ΔT = m(2108)(0 - (-20)) + m(334000) + m(4186)(40 - 0) = 42160m + 334000m + 167440m = 543600 m
Heat lost by water = mC ΔT = 0.25 (4186)(75 - 40) = 36627.5 J
543600 m = 36627.5
m = 0.0674 kg = 67.4 g of ice.
Answer:
F = 19.1 N
Explanation:
To find the force exerted by the string on the block you use the following formula:
(1)
k: spring constant = 95.5 N/m
x: displacement of the block from its equilibrium position = 0.200 m
you replace the values of k and x in the equation (1):

Hence, the force exterted on the block is 19.1 N