Answer:
P=atm

Explanation:
The problem give you the Van Der Waals equation:

First we are going to solve for P:


Then you should know all the units of each term of the equation, that is:







where atm=atmosphere, L=litters, K=kelvin
Now, you should replace the units in the equation for each value:

Then you should multiply and eliminate the same units which they are dividing each other (Please see the photo below), so you have:

Then operate the fraction subtraction:
P=

And finally you can find the answer:
P=atm
Now solving for b:




Replacing units:

Multiplying and dividing units,(please see the second photo below), we have:



Answer:
NO2- is the reducing agent.
Cr2O7_2- is the oxidizing agent.
H+ is neither
Explanation:
Reduction is the gain in electron. A chemical specie that undergoes reduction is called the oxidizing agent.
Oxidation is simply the loss in electrons. A chemical specie that undergoes oxidation is called the reducing agent.
Let us look at the species.
The first specie is the NO2-. In this specie, the oxidation number of nitrogen changed from +3 to +5 in NO3-. Thus we can see that there is more loss of electron to have caused an increase in the oxidation number positively. This shows an oxidation. Hence, NO2- is the reducing agent.
Let us look at the chromium. We can see that the oxidation number of chromium changed from +7 to +3.
Now we can see that it is a decrease and hence, it is a gain of electron and thus it is reduction. This means the first chromium specie is the oxidizing agent.
The hydrogen ion is simply placed there to balance the ions and hence it is neither the oxidizing nor the reducing agent.
<span>1.0 x 10-14. That is the value of Kw at 25 degrees C.
</span>
Answer:
d = 0.992 g/L
Explanation:
Data Given:
Pressure of nitric oxide (NO) = 0.866 atm
Temperature of a gas = 46.2° C
Convert the temperature to kelvin = 46.2° C + 273
temperature in kelvin = 319.2 K
density of nitric oxide (NO) = ?
Solution:
Density of a gas can be calculated by
d = PM /RT
Where
d = density
P = Pressure
M = molar mass of gas
R = ideal gas constant = 0.0821 L atm mol⁻¹ K⁻¹
T = temperature
So,
Molar mass of NO = 30 g/mol
Put values in the formula:
d = PM /RT
d = 0.866 atm × 30 g/mol / 0.0821 L atm mol⁻¹ K⁻¹ × 319.2 K
d = 25.98 atm. g/mol / 26.2 L atm mol⁻¹
d = 0.992 g/L