The more focused the rays are, the more energy an area receives, and the warmer it is. The lowest latitudes get the most energy from the Sun. The highest latitudes get the least. The difference in solar energy received at different latitudes drives atmospheric circulation.
Answer:
<u></u>
Explanation:
<u>1. Balanced molecular equation</u>
<u>2. Mole ratio</u>
<u>3. Moles of HNO₃</u>
- Number of moles = Molarity × Volume in liters
- n = 0.600M × 0.0100 liter = 0.00600 mol HNO₃
<u>4. Moles Ba(OH)₂</u>
- n = 0.700M × 0.0310 liter = 0.0217 mol
<u>5. Limiting reactant</u>
Actual ratio:
Since the ratio of the moles of HNO₃ available to the moles of Ba(OH)₂ available is less than the theoretical mole ratio, HNO₃ is the limiting reactant.
Thus, 0.006 moles of HNO₃ will react completely with 0.003 moles of Ba(OH)₂ and 0.0217 - 0.003 = 0.0187 moles will be left over.
<u>6. Final molarity of Ba(OH)₂</u>
- Molarity = number of moles / volume in liters
- Molarity = 0.0187 mol / (0.0100 + 0.0031) liter = 0.456M
Answer:
(a) (b)
Explanation:
The reaction that is carried out by the enzyme catalase produces
The reaction that is carried out by the enzyme catalase produces
That's because the solubility
- Temperature is directly proportional to solubility
Higher the solubility higher the temperature
Lower the temperature lower the solubility
So
Less temperature makes enzymes work faster