Answer : The correct option is, (D) CO₂, BCl₃, and Fe³⁺
Explanation :
According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs.
(a) 
It is a Lewis-acid because it can accepts electron pairs.
(b) 
It is not a Lewis-acid because it can not accepts electron pairs but it is a base because it can donates and accept hydrogen ion.
(c) 
It is a Lewis-acid because it can accepts electron pairs because it has an incomplete octet and an empty 2p orbital.
(d) 
It is a Lewis-acid because it can accepts electron pairs.
Hence, the ions which behave as Lewis acids are, CO₂, BCl₃, and Fe³⁺
The answer is A.
Remember that diffusion is the spontaneous process of solutes moving from areas of higher concentration to areas of lower concentration (spontaneous just means the process doesn't require an input of energy to occur).
An electron is a negative particle, so the answer is -1
"For example; water is a covalent compound which is formed by the covalent bonding between hydrogen and oxygen atoms."
Answer:
Please see the answer..hope its works
Explanation:
The NMR spectrometer will acquire data for the wrong chemical shift range and you will potentially have skewed data when opening spinworks-NMR spectrometer examines a specific 12 ppm range based on the expected solvent peak, and if a different solvent is used a different range may be examined
To explain further, If the user declares the wrong solvent, one of two things may happen. Firstly, the spectrometer may not be able to establish a deuterium lock and will report an error and not run the sample. Secondly, the spectrometer may be able to establish a lock despite the fact that the deuterium signal is off resonance. If the lock is established, the field strength will be set to a value appropriate to put the declared solvent signal on-resonance. When a proton NMR spectrum is collected, the chemical shift scale will be incorrect by an amount equal to the proton chemical shift difference between the true solvent and the declared solvent.