Answer:
1.7 mL
Explanation:
<em>A chemist must prepare 550.0 mL of hydrochloric acid solution with a pH of 1.60 at 25 °C. He will do this in three steps: Fill a 550.0 mL volumetric flask about halfway with distilled water. Measure out a small volume of concentrated (8.0 M) stock hydrochloric acid solution and add it to the flask. Fill the flask to the mark with distilled water. Calculate the volume of concentrated hydrochloric acid that the chemist must measure out in the second step. Round your answer to 2 significant digits.</em>
Step 1: Calculate [H⁺] in the dilute solution
We will use the following expresion.
pH = -log [H⁺]
[H⁺] = antilog - pH = antilog -1.60 = 0.0251 M
Since HCl is a strong monoprotic acid, the concentration of HCl in the dilute solution is 0.0251 M.
Step 2: Calculate the volume of the concentrated HCl solution
We want to prepare 550.0 mL of a 0.0251 M HCl solution. We can calculate the volume of the 8.0 M solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂/C₁
V₁ = 0.0251 M × 550.0 mL/8.0 M = 1.7 mL
Answer:
1.14atm
Explanation:
Given parameters:
V1 = 250cm³ ;
1000cm³ = 1dm³; so this is 0.25dm³
P1 = 760torr
760torr = 1atm
V2 = 220cm³ ; 0.22dm³
Unknown:
New pressure = ?
Solution:
To solve this problem, we apply Boyle's law and we use the expression below:
P1 V1 = P2V2
The unknown is P2;
1 x 0.25 = P2 x 0.22
P2 = 1.14atm
Answer:
It would take 3.64 hours to travel.
Explanation:
200km with 55 per hour.
200 divided by 55 would equal 3.64.
I am dividing because to solve time would be distance/rate.
I hope this helps! :)
Answer:
Mercury responds to temperatures differently than water. When mercury is cold, the molecules bunch together, making it seem to be less liquid, and the opposite happens during heat.
Hope this helps!