Answer:
Spreading, like dispersing.
Explanation:
<h3>
Answer:</h3>
1.93 g
<h3>
Explanation:</h3>
<u>We are given;</u>
The chemical equation;
2C₂H₆(g) + 7O₂(g) → 4CO₂(g) + 6H₂O(l) ΔH = -3120 kJ
We are required to calculate the mass of ethane that would produce 100 kJ of heat.
- 2 moles of ethane burns to produce 3120 Kilo joules of heat
Number of moles that will produce 100 kJ will be;
= (2 × 100 kJ) ÷ 3120 kJ)
= 0.0641 moles
- But, molar mass of ethane is 30.07 g/mol
Therefore;
Mass of ethane = 0.0641 moles × 30.07 g/mol
= 1.927 g
= 1.93 g
Thus, the mass of ethane that would produce 100 kJ of heat is 1.93 g
Answer:
94.44
Explanation:
Volume is equal to Mass/Density so therefore, you do the mass which is 68.0 g/0.72 g/mL which is the density and get 94.44 mL because the g cancel each other out when it comes to the label!
Answer:
nvnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnv
Explanation:
The density is 4 g/cm³ or 4000 kg/m³.
Density = mass/volume = 12 g/3 cm³ = 4 g/cm³
The measurement of 4 g/cm³ is already in <em>SI units</em>.
In SI <em>bas</em>e units,
Density = (4 g/1 cm³) × (1 kg/1000 g) × (100 cm/1 m)³ = 4000 kg/m³