Answer:
The solar nebula became hot and dense because of that it pulling in more gas. This flattened into a rotating disk. It spun faster and faster, forming the Sun.
Explanation:
hope this helps
Answer:
b) 900 W
Explanation:
The breaker trips when the current is equal to 20 A. The power (P) is the ddp (V) multiplied by the current. So, for the electric heater, the current is:
P = V*i
1500 = 120*i
i = 12.5 A
So, to become in 20 A, it's needed 7.5 A, which must come from the hairdryer. Its power must be:
P = 120*7.5
P = 900 W
Answer: a = 1.32 * 10^18m/s² due north
Explanation: The magnitude of the force required to move the electron is given as
F = ma
The force exerted on the charge by the electric field of intensity (E) is given by
F = Eq
Thus
Eq = ma
a = E * q/ m
Where a = acceleration of charge
E = strength of electric field = 7400N/c
q = magnitude of electronic charge = 1.609 * 10^-6c
m = mass of an electronic charge = 9.109 * 10^-31kg
a = 7400 * 1.609 * 10^-16/ 9.109 * 10^-31
a = 11906.6 * 10^-16 / 9.019 * 10^-31
a = 1.19 * 10^-12 / 9.019 * 10^-31
a = 0.132 * 10^19
a = 1.32 * 10^18m/s²
As stated in the question, the direction of the electric field is due north hence, the direction of it force will also be north thus making the electron experience a force due north ( according to Newton second law of motion)
Answer:
38.4 m/s
Explanation:
a) at t = 3.2s. 
b) at t = 3.2 + Δt. 
c) As Δt approaches 0. We can find the velocity by the ratio of Δx/Δt






As Δt approaches 0, v = 38.4 + 0 = 38.4 m/s
The magnitude of Alioth ( the brightest star in the big dipper ) is 1.76 and it is about 81 light years distant from Earth.