Answer:
Mass is constant everywhere,
But weight is different,
If earth g = 10 then moon's is 1.6666667
Now billie's weight in moon is 41.6667
Answer:
Consider the diagram. We are effectively being asked to prove that $\alpha=i_1$, for any value of $i_1$. Now, from trigonometry,
Explanation:
Answer:
B) (-2.0 m, 0.0 m)
Explanation:
Given:
Mass of particle 1 is, 
Mass of particle 2 is, 
Position of center of mass is, 
Position of particle 1 is, 
Position of particle 2 is, 
We know that, the x-coordinate of center of mass of two particles is given as:

Plug in the values given.

We know that, the y-coordinate of center of mass of two particles is given as:

Plug in the values given.

Therefore, the position of particle 2 of mass 3.0 kg is (-2.0 m, 0.0 m).
So, option (B) is correct.
Newton's second law of motion pertains to the behavior of objects for which all existing forces are not balanced. The second law states that the acceleration of an object is dependent upon two variables - the net force acting upon the object and the mass of the object. The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
Lenz's Law: The polarity of the induced emf is such that it produces a current whose magnetic field opposes the change in magnetic flux through the loop.