Answer:
a) P = 807.85 N, b) P = 392.15 N, c) P = 444.12 N
Explanation:
For this exercise, let's use Newton's second law, let's set a reference frame with the x-axis parallel to the plane and the direction rising as positive, and the y-axis perpendicular to the plane.
Let's use trigonometry to break down the weight
sin θ = Wₓ / W
cos θ = W_y / W
Wₓ = W sin θ
W_y = W cos θ
Wₓ = 1200 sin 30 = 600 N
W_y = 1200 cos 30 = 1039.23 N
Y axis
N- W_y = 0
N = W_y = 1039.23 N
Remember that the friction force always opposes the movement
a) in this case, the system will begin to move upwards, which is why friction is static
P -Wₓ -fr = 0
P = Wₓ + fr
as the system is moving the friction coefficient is dynamic
fr = μ N
fr = 0.20 1039.23
fr = 207.85 N
we substitute
P = 600+ 207.85
P = 807.85 N
b) to avoid downward movement implies that the system is stopped, therefore the friction coefficient is static
P + fr -Wx = 0
fr = μ N
fr = 0.20 1039.23
fr = 207.85 N
we substitute
P = Wₓ -fr
P = 600 - 207,846
P = 392.15 N
c) as the movement is continuous, the friction coefficient is dynamic
P - Wₓ + fr = 0
P = Wₓ - fr
fr = 0.15 1039.23
fr = 155.88 N
P = 600 - 155.88
P = 444.12 N
Answer: V = 3.4 L
Explanation: Use Boyle's Law to find the new volume. P1V1 = P2V2, derive for V2, then the formula will be V2= P1V1 / P2
V2 = 2.5 atm ( 4.5 L ) / 3.3 atm
= 3.4 L
Answer:
Coefficient of friction.
Explanation:
The amount of friction divided by the weight of an object is equal to the coefficient of friction. It is a dimensional less number. It can be given by :

N is normal force.
= coefficient of friction

The working distance gets shorter as the magnification gets bigger. In order to focus, the high-power objective lens must be significantly nearer to the specimen than the low-power lens. Magnification is negatively correlated with working distance.
Magnification change The magnification of a specimen is increased by switching from low power to high power. The magnification of an image is determined by multiplying the magnification of the objective lens by the magnification of the ocular lens, or eyepiece.
The geometry of the optical system connects the magnifying power, or how much the thing being observed seems expanded, and the field of view, or the size of the object that can be seen.
To know more about working distance
brainly.com/question/13551539
#SPJ4
Answer:
15 meters
Explanation:
The inicial energy of the ball is just potencial energy, and its value is:
E = m * g * h = m * g * 20,
where m is the ball mass, and g is the value of gravity.
In the moment that the ball strickes the ground, all potencial energy transformed into kinetic energy, and 25% of this energy is lost, so the total energy at this moment will be:
E' = 0.75 * E = 0.75 * m * g * 20 = 15*m*g
This kinetic energy will make the ball goes up again, and at the maximum height, all kinetic energy is transformed back into potencial energy.
So, as the mass and the gravity are constants, we can calculate the height the ball will reach:
E' = m*g*h = 15*m*g -> h = 15 meters