Answer:
b
Explanation:
they both have a neutral charge so they couldn't be positive or negative since that wouldn't come from anywhere
Using conservation of energy and momentum we get m1*v1=(m1+m2)*v2 so rearranging for v2 and plugging the given values in we get:
(200000kg*1.00m/s)/(21000kg)=.952m/s
Answer : The correct option is, (c) 
Explanation :
First we have to calculate the energy or heat.
Formula used :

where,
E = energy (in joules)
V = voltage (in volt)
I = current (in ampere)
t = time (in seconds)
Now put all the given values in the above formula, we get:


Now we have to calculate the heat capacity of the calorimeter.
Formula used :

where,
C = heat capacity of the calorimeter
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get:


Therefore, the heat capacity of the calorimeter is, 
Answer:
4.54
Explanation:
X+10X=50
11X=50
X=4.54#
<h2>please follow me...</h2>
The boiling point is defined as the temperature at which the pressure of the vapor of the liquid is equivalent to the external atmospheric pressure surrounding the liquid. Therefore, the boiling point of the liquid is dependent on the atmospheric pressure.
Based on this, the vapor pressure of cyclohexane at 81 degrees celcius will be equal to atmospheric pressure (based on barometric readings)<span />